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Preface

These lecture notes have been written for the course Applied Statistics at the Life Science Faculty at
the University of Copenhagen (until 2007 known as KVL). The course is offered by the Department
of Natural Sciences. The course consists of five weeks with “statistical themes” followed by a project
period of three weeks. The material in these notes will be the basis for the first five weeks in the 2007
version of the course.

In short, the notes cover various kinds of Gaussian linear and non-linear models, Gaussian models with
random effects, logistic regression and the proportional odds model. In particular the ANOVA models
are assumed to be known and are only dealt with implicitly.

The notes are, to a great extend, inspired by earlier lecture notes by Bo Martin Bibby (Noter til Praktisk
Statistisk Dataanalyse and Noter til Regressionsanalyse). Parts of the text are almost merely translations of
these notes, while other parts have been prepared from scratch. An important difference, however, is
that the present notes use R as well as SAS.

The intention never was to give a comprehensixe exposition of the subjects. In particular, problems like
variance heterogeneity, multiple testing and numerical problems in R and SAS are dealt with as they
occur. Instead, the intention was to give introductions to the areas which are (hopefully) useful for the
project work in the course as well as for later use.

In all chapters one or a few data examples form the basis, and statistical analyses are carried out for these
examples. The focus is on the statistical models, their interpretation and, not the least, the conclusions
obtained from the analysis.

As an important part of the analyses, computer programs are provided. All analyses are carried out with
both R and SAS, but the reader is supposed to choose one or the other. The notes contain no introduction
to SAS and R, so the reader should be familiar with one of them already (see the webpage of the course,
given below, for suggestions on introductory material).

Datasets and computer programs for examples and exercises are made available at the webpage of the
course,

http://www.matfys.kvl.dk/stat/kurser/appliedstatistics/

Here you can also find other information about the course.

Frederiksberg, November 2007

Anders Tolver Jensen

Helle Sørensen
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Chapter 1

Multiple linear regression

In this chapter we discuss models applicable in situations where the outcome of a (response) variable is
naturally explained by the outcome of a number of qualitative variables, also called covariates.

In SAS, PROC REG and PROC GLM can both be used for (multiple) regression analysis. We will use PROC GLM

since it works for general linear models. For example, it allows for quantitative explanatory variables
(factors). In R, we will use the function lm. See the computer sections for computational details, and also
for some more general comments about graphics in R.

1.1 Simple linear regression

A simple linear regression analysis is natural when, for each experimental unit, we have measured two
quantities and we wish to (partly) explain the value of one of them by the other one.

Assume, for example, that we have registered the intake of some feed supplement and the increment
in weight over some period for n pigs. For the i’th pig the measurements are xi and yi. We wish to
explain the increment in weight from the intake of feed supplement, and a plot of y against x is natural
to illustrate the relation (see Figure 1.1).
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Figure 1.1: Simple linear regression.
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4 CHAPTER 1. MULTIPLE LINEAR REGRESSION

Tree Diameter Height Volume Tree Diameter Height Volume
1 8.3 70 10.3 17 12.9 85 33.8
2 8.6 65 10.3 18 13.3 86 27.4
3 8.8 63 10.2 19 13.7 71 25.7
4 10.5 72 16.4 20 13.8 64 24.9
5 10.7 81 18.8 21 14.0 78 34.5
6 10.8 83 19.7 22 14.2 80 31.7
7 11.0 66 15.6 23 14.5 74 36.3
8 11.0 75 18.2 24 16.0 72 38.3
9 11.1 80 22.6 25 16.3 77 42.6

10 11.2 75 19.9 26 16.9 66 64.3
11 11.3 79 24.2 27 17.3 81 55.4
12 11.4 76 21.0 28 17.5 82 55.7
13 11.4 76 21.4 29 17.9 80 58.3
14 11.7 69 21.3 30 18.0 80 51.5
15 12.0 75 19.1 31 18.0 80 51.0
16 12.9 74 22.2 32 20.6 87 77.0

Table 1.1: Diameter, height and volume of 32 cherry trees.

The corresponding simple linear regression model is given by

yi = α + βxi + ei, i = 1, . . . , n,

where the ei’s are N(0, σ2)-distributed and independent.

The variable y is called the response variable, and x is called the explanatory variable, or a covariate (or a
regressor). The parameter α is interpreted as the expected weight increment without feed supplement
(x = 0) whereas β is the expexted extra weight increment obtained by increasing the amount of feed
supplement by one unit.

1.2 Multiple linear regression

Assume now that for each experimental unit there are measurements of a response variable, y, as well as
of a number of explanatory variables (covariates), x1, . . . , xp. That is, for the i’th experimental unit there
are measurements yi and x1i, . . . , xpi.

The purpose is to (partly) explain the variation of the response variable by means of the explanatory
variables. The multiple linear regression model is given by

yi = β0 + β1x1i + . . . + βpxpi + ei, i = 1, . . . , n, (1.1)

where the ei’s are N(0, σ2)-distribued and independent. The parameter β1 is the expected difference
between two experimental units for which the variable x1 differs by one, but all other explanatory variables
are the same. Similarly for β2, . . . , βp.

Let us consider an example.

Example 1.1 (Volume of cherry trees) For each of 32 cherry trees one has measurements of the diameter
(inches), the height (feet) and the volume (cubic feet). The dataset is given in Table 1.1.

The main interest is on prediction of the volume. The (economic) value of a tree is represented by
the volume of the tree which is hard to measure without felling the tree. As opposed to this one can



1.2. MULTIPLE LINEAR REGRESSION 5

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
x1i 2 6 9 14 16 4 10 8 11 3 1 7 13 12 5 15
x2i 17 10 12 25 21 18 14 22 20 11 13 15 24 16 23 19
yi 29 3 -2 9 -5 25 -1 21 8 14 24 10 10 -3 32 -6

Table 1.2: Fictious numbers used for Figure 1.2.

measure the diameter and the height without felling the tree. Hence, if the volume is well described
from the diameter and the height, then the forester can estimate the economic value of the forest only
from measurements of diameter and height.

Moreover, since it is much easier to measure the diameter than the height it is relevant to investigate
whether measurements of the height holds extra information about the volume, in excess of the infor-
mation from the diameter. In other words: does height explain parts of the variation in volume which
is is not explained by diameter?

A multiple regression model can help us answer such questions. Let d be the diameter, h the height and
v the volume, then the multiple regression of volume on diameter and height is given by

vi = β0 + β1di + β2hi + ei, i = 1, . . . , n,

where the ei’s are independent and N(0, σ2)-distributed. The parameter β1 is the expected difference
in volume between two trees with a one inch difference in diameter and the same height. Similarly, β2

is the expexted difference in volume for two trees with same diameter but a difference in height of one
foot. �

Now, how do we check if a multiple linear regression is a reasonable model for the data we have col-
lected? In the simple case with only one covariate a plot of the response against the covariate most often
reveals whether a simple linear regression makes sense at all (although the plot cannot stand alone as
model validation since it checks only the systematic part of the model).

In the case with several covariates the response may be plotted against each of the covariates but one has
to be very careful with the interpretation of these plots. It is clear that if each of the plots shows a linear
relationship, then the fixed/systematic part of the multiple linear regression model is indeed reasonable.
There are, however, situations where the plots do not show a linear relationship but a multiple linear
regression model is appropriate nonetheless.

Consider for example the fictious numbers in Table 1.2. Plots of y against x1 and x2, respectively, are
shown in Figure 1.2. There seems to be a relationship between x1 and y, but is it linear? There does not
really seem to be a relationship between x2 and y. Actually, the numbers satisfy

y = 1 − 3x1 + 2x2

(exactly, no error terms), so there is a linear relationship between x1 and y as well as between x2 and y.

The point is that even if there is only very small measurement errors then it is not possible to assess the
appropriateness of the multiple regression model from the plots of the response against each covariate.
The picture may be blurred due to the variation of the other variable.

Rather, model validation should be based on investigation of the residuals. In order to get the residuals,
the model parameters should be estimated. The parameters in model (1.1) are β0, β1, . . . , βp and σ2. The

mean parameters (the βi’s) are estimated by least squares and we denote the estimates by β̂0, β̂1, . . . , β̂p.
The predicted values and residuals are then defined by

µ̂i = β̂0 + β̂1x1i + . . . + β̂pxpi,
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Figure 1.2: Scatter plots of y against x1 and x2 for the numbers in Table 1.2.

and

êi = yi − µ̂i.

The estimate for σ2 is the so-called mean square error (MSE),

s2 =
1

n − p − 1

n

∑
i=1

ê2
i =

n

∑
i=1

(yi − µ̂i)
2.

If the model describe the data well, then the predicted values and the residuals are (almost) independent,
so there will be no patterns in a scatter plot of the residuals against the predicted values. Moreover, if
the model describe the data well, then the residuals do not depend on the covariates, so plots of the
resisuals against each of the covariates will show no patterns. Hence, we can validate the model by
investigating these plots, looking for systematic patterns in the way the points are spread out. No
pattern is an indication that the model fits the data well, whereas a pattern in one of the plots indicates
that the model does not describe the data well.

Usually we use the standardized residuals instead of the “raw” residuals (the êi’s above). The standardized
residuals are defined as the raw residuals divide by their estimated standard deviation, and they are
therefore all on the same scale. If the model describe the data well then the standardized residuals are
approximately N(0, 1)-distributed, so we sometimes make a QQ-plot of the standardized residuals to
check if this is true.

If the model is not appropriate for the data, we cannot trust the results from the statistical analysis,
that is, the estimates, confidence intervals and p-values etc. Hence, model validation is very important!
There are many potential reasons that a model is not appropriate: the mean structure may be misspec-
ified (ie. a missing covariate or a non-linear structure), there may be variance heterogeneity (all ei’s do
not have the same variance), the observations may not be independent; the ei’s may not be normally
distributed.

Often, but not always, the problems regarding variance heterogeneity and normality can be remedied by
transformation of the response and/or the covariates. Once we are satisfied with the model validation
part of the analysis, we can start model reduction (hypothesis testing), analysis of parameter estimates,
prediction for other values of the covariates, etc.

Let us consider the example with cherry trees again for details on these issues.
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Example 1.1 (continued) Recall the multiple regression model

vi = β0 + β1di + β2hi + ei, i = 1, . . . , n,

where the ei’s are independent and N(0, σ2)-distributed, v is the volume, d is the diamater and h is the
height.

Figure 1.3 shows the volume plotted against the diameter (to the left) and the volume plotted against
the height (to the right). There is a clear relationship between diameter and volume as well as between
height and volume, but recall that these figures are not appropriate to judge whether the multiple re-
gression model describes the data well or not. We need to consider the residuals, which we will do in a
moment.
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Figure 1.3: Volume af cherry trees plotted against diameter and height.

From the computer output (R or SAS) we find the estimates (with standard errors in parenthesis):

β̂0 = −44.8706 (10.6234), β̂1 = 5.1606 (0.3196), β̂2 = 0.0945 (0.1548), s2 = 25.57

The computer programs also carry out t-tests for the hypotheses H0 : βi = 0. The test statistic is given
by

β̂i

sβ̂i

∼ t(n − p − 1),

under H0, and the p-values are given in the output.

In this example we see that the β0 and β1 are significantly different from zero (p = 0.0002 and p < 0.0001,
respectively), whereas β2 is not (p = 0.55). We have to be very careful with the conclusions: The
interpretation is not that that there is no relationship between height and volume. Rather, we conclude
that height does not contribute to the explanation of volume when volume has been adjusted for diameter.

This is an example of multi-collinearity which means that there is a (linear) relationship between some
of the covariates. Here, height and diameter are positively correlated. Loosely speaking, they are both
measurements of the same, namely the size of the tree. Had we used age of the tree as yet another
covariate we would probably have reached a similar conclusion: age and volume are related but when
we adjust for diameter (and height), there is no significant effect of age. Sometimes multi-collinearity is
easily detected (as in this case); sometimes it is not so obvious (in particular when it involves three or
more variables). In any case we must be careful with the conclusions from multiple regression analyses.
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Recall that the above conclusions are valid only if the model describes the data well, and we need
to validate the model. In fact, usually we would not be interested in the estimates and tests before
having investigated the residuals. Figure 1.4 shows the standardized residuals plotted against the two
covariates (top) and against the predicted values (bottom left). In two of the three figures we see a
clear pattern: larger standardized residuals for small and large value than for medium values of the
variable on the x-axis. The bottom right plot is a QQ-plot of the standardized residuals. A QQ-plot
plots the quantiles of the standardized residuals to those of the standard normal distribution. Hence,
if the assumption of Gaussian error terms ei holds, then the points will be scattered around a straight
line. In this case, the QQ-plot looks akay, except for a very large residual. However, the residual plots
make us doubt that the model gives a reasonable description of the data, and hence make us doubt the
conclusion from the model!
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Figure 1.4: Residual plots and QQ-plot for the multiple linear regression model applied to the raw data.

Then what? Often a better fit is obtained by transformation of the response and/or the covariates. But
there are many possible transformations so which one should we choose? In this example we can get
help from the case story and from geometry.
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h

d

If we think of a cherry tree as a cone with diameter d and height h, then
the volume of that cone is given by

v =
π

12
· h · d2.

A cherry tree is of course only approximately described by a cone so we
extend the model by allowing the constant and the powers to be different
from those above:

v = c · dβ1 · hβ2 ·
Taking logarithms on both sides yields:

log v = β0 + β1 log d + β2 log h,

hvor β0 = log c and log is the natural logarithm.

At best we can hope for the relation to hold on average, and hence only approximately for individual
trees. We add Gaussian error terms ei and get

log vi = β0 + β1 log di + β2 log hi + ei, i = 1, . . . , n.

This is a multiple linear regression of log v on log d and log h. The difference between this new model and
the model analyzed above is that both the response variable and both covariates have been transformed.

We analyze the model as before. First we plot the response log v against each of the covariates, log d
and log h. These plots are shown in Figure 1.5. Again we see a clear relationship between the response
and each of the covariates, and the relationships even seem approximately linear, so there is reason to
believe that the multiple regression model fits the data well.
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Figure 1.5: The logarithmic volume against the logarithmic diameter and the logarithmic height for the
32 cherry trees.

We also have to investigate the residuals in order to trust the analysis. Residual plots and a QQ-plot are
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shown in Figure 1.6. There seems to be no systematic pattern in any of the reidual plots; the residuals
are nicely spread out.
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Figure 1.6: Residual plots and QQ-plot for the multiple linear regression model applied to the trans-
formed data (all three variables log-transformed).

There is, however, an observation with a very large standardized residual, around 4. It comes from
observation no. 26 which has a diameter of 16.9, a height of 66 and a volume of 64.3. Except for this ob-
servation the QQ-plot looks quite nice. The standardized residuals are approximately independent and
standard normal so we would expect only 1 in 10000 standardized residuals to be as large numerically
as 4. To have one with only 32 observations is quite suspicious.

The so-called Cook’s distance is another way to to detect outliers or highly influential observations. Cook’s
distance is computed for each observation. Loosely speaking, Dj measures how much the predicted
values change when the j’th observations is left out of the analysis. Formally, Dj is defined as

Dj =
1

(p + 1)s2

n

∑
i=1

(µ̂i − µ̂
(j)
i )2, j = 1, . . . , n,

where µ̂
(j)
i is the predicted value of yi (the response) when the j’th observation is left out of the analysis.

In other words, Dj is large for observations which has great influence on the estimates.
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Figure 1.7 shows the Cook’s distances against the observation number for the 32 cherry trees. One of
the observations — no. 26, the same as before — is very different from the other ones.
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Figure 1.7: Cook’s distances for the multiple regression model applied to the log-transformed data.

Now, what should we do about such an observation? On the one hand it is not a good idea to leave it
out if there are no reasons why it should deviate. On the other hand it is not apt that the conclusions
rely too strogly on one observation; then the conclusion is not very strong. Often, the best solution is to
analyze the data both with and without the suspicious observation and state the conclusions from both
analyses.

First, the analysis of the full dataset. From the computer output we find the following estimates (and
standard errors):

β̂0 = −4.9907 (1.0488), β̂1 = 2.1381 (0.0982), β̂2 = 0.6490 (0.2627), s2 = 0.0132

Moreover, we find that the hypotheses H0 : β0 = 0 and H0 : β1 = 0 are both convincingly rejected
(p < 0.0001 for both hypotheses). The parameter β2 is also significantly different from zero (p = 0.02),
so the logarithmic height does indeed contribute to the explanation of the logarithmic volume, even
after it has been adjusted for the logarithmic diameter. Note that this is contrary to the conclusion from
the analysis of the original (untransformed) dataset.

Next, the analysis of the dataset without the influential observation, no. 26. The residual plots are not
shown here but look fine (except a slight tendency that the variance increases with height; check it
yourself!). The estimates are

β̂0 = −6.6316 (0.7998), β̂1 = 1.9827 (0.0750), β̂2 = 1.1171 (0.2044), s2 = 0.0066.

We see that the estimates are quite different from the estimates from the analysis of the full dataset.
The variance estimates is halved when observation no. 26 is left out. Furthermore, the estimate of β2 is
almost doubled and is now highly significant (p < 0.0001). In the following we will use the estimates
without observation no. 26.

Recall that we ended up using the log-transformed data. What does the analysis imply on the original
scale? Consider two trees with same height, h, and diameters d1 and d2, respectively. The difference
between the expected logarithmic volumes for these two trees is

E(log v2 − log v1) = β0 + β1 log d2 + β2 log h − (β0 + β1 log d1 + β2 log h)

= β1(log d2 − log d1)
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Taking the exponential function on both sides yields (with somewhat sloppy notation)

v2

v1
≈
(

d2

d1

)β1

This is of course not surprising, cf. the cone model. We have estimated β1 to 1.98 (without observation
no. 26). Hence, for example, an increment in diameter of 25% corresponds to a volume increment of 56%
since 1.251.98 = 1.56. Moreover, the 95%-confidence interval for β1 is (1.83, 2.14), so the 95%-confidence
interval for the volume increment is (1.251.83, 1.252.14) = (1.50, 1.61), corresponding to (50%,61%).

Remember that prediction was an important issue in this example. Consider for example a tree with a
diameter of 12 inches and a height of 75 feet. What is the predicted volume of this tree? Well, if we use
the parameter estimates we get the predicted value

ŷ = β̂0 + β̂1 · log(12) + β̂2 · log(75) = −6.6316 + 1.9827 · log(12) + 1.1171 · log(75) = 3.118

of the log-volume, and hence the a predicted volume of exp(3.118) = 22.61. The prediction interval for
the log-volume is computed to (2.949, 3.288) by R and SAS, hence the prediction interval for the volume
is (19.08, 26.79). That is, with 95% probability a 12 feet high tree with diameter 12 inches will have a
volume between 19 and 27 cubic feet.

Finally, a comment about the interpretation of the parameters, β1 and β2. Consider for a moment the
raw residuals (rvolume) obtained by the simple linear regression of logarithmic volume on logarithmic
diameter, and the raw residuals (rheight) obtained by the simple linear regression of logarithmic height
on logarithmic diameter. The residuals represent the part of the logarithmic volume and logarithmic
height, respectively, which is not explained by the logarithmic diameter. The two set of residuals are
plotted against each other in Figure 1.8.
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Figure 1.8: Added variance plot.

The estimated slope parameter in the corresponding simple linear regression of rvolume on rheight

is 1.117, that is, exactly β̂2 from above. This is another way to say that β2 measures how much of
the logarithmic volume that can be explained by the logarithmic height, in excess of what has been
explained by the logarithmic diameter. �

1.2.1 R programs and output

We use lm for analysis of multiple regression models.
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Example 1.1 (continued)

Reading the data into R

Suppose that the dataset is saved in the ASCII-file cherry.txt as follows:

diameter height volume

8.3 70 10.3

8.6 65 10.3

8.8 63 10.2

. .

. . [more datalines here]

. .

20.6 87 77.0

The dataset is read into R and attached, so we can use the variable names volume, dimater and height.
The path to the file should of course be specified with the file name.

> cherry = read.table("cherry.txt",header=T)

> attach(cherry)

Scatter plots of response against covariates and a few general comments about graphical options

Simple scatter plots of volume against diameter and height are made by the plot-commands:

> plot(diameter,volume)

> plot(height,volume)
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Figure 1.9: R-plot with default setting (no options), compare with the left part of Figure 1.3.

The first plot-command gives the scatter plot in Figure 1.9, which is not quite identical to the left plot
in Figure 1.3:

◦ The plots in Figure 1.3 have solid bullets rather than open circles. This is obtained by the option
pch=16; there are many other possibilities.
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◦ The text and numbers on the axes are enlarged in Figure 1.3. This is obatined by the options
cex.axis=2 and cex.lab=2. Replace the “2” by another number if you want the text larger or
smaller (the default is 1).

◦ There is a headline in Figure 1.3. This is obtained by the options cex.main=2 and main="Cherry

trees: raw data".

◦ In order to make enough room for the enlarged labels and the title you may write something like
par(mar=c(5,4,2,1)+0.5) before the plot-command.

◦ Moreover, the screen plot can be saved to a file with dev.print. Below is shown how to copy the
screen plot to a pdf-file called ex1 1.pdf. If you prefer to use the eps-format instead, then write
dev.print(device=postscript, file="ex1 1.eps").

In summary, the plot in Figure 1.3 is made and written to a file with the commands:

> par(mar=c(5,4,2,1)+0.5)

> plot(diameter,volume,cex.axis=2,cex.lab=2,pch=16,

cex.main=2,main="Cherry trees: raw data")

> dev.print(device=pdf, file="ex1_1.pdf")

In the following we write the simplest possible version of the plot-commands, without extra options. If
you want to change the layout, then you may use some of the options above — or some of the numerous
other options that exist in R, write ?par for help.

Multiple linear regression on the original numbers

The multiple regression model of volume on diameter and height is analyzed with the lm-function: the
response variable is written on the left hand side of a “tilde”, the explanatory variables on the right
hand side. Estimates from the fit are obtained by summary. A slightly edited version of the run looks as
follows:

> model1 = lm(volume ~ diameter + height)

> summary(model1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -44.87058 10.62344 -4.224 0.000217 ***

diameter 5.16058 0.31958 16.148 4.94e-16 ***

height 0.09446 0.15476 0.610 0.546355

Residual standard error: 5.057 on 29 degrees of freedom

From the output we read off the estimates, β̂0 = −44.87 (intercept), β̂1 = 5.16 (the effect of diameter),
β̂2 = 0.09 (the effect of height). We also find the corresponding standard errors as well as the t-tests for
the hypotheses that the parameters are equal to zero. The residual standard deviation is estimated to
s = 5.057 corresponding to s2 = 25.57.

We get the predicted values by predict(model1)and the raw residuals by residuals(model1). In order
to get the standardized residuals the MASS-package should be loaded; then stdres gives the standard-
ized residuals. Hence, the following commands result in three residual plots and a QQ-plot similar to
those of Figure 1.4.
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> library(MASS)

> pred1 = predict(model1)

> stdres1 = stdres(model1)

> plot(pred1,stdres1)

> plot(diameter,stdres1)

> plot(height,stdres1)

> qqnorm(stdres1)

Multiple linear regression on the log-transformed numbers

First the three variables are transformed with the natural logarithm, and the simple versions of Figure 1.5
are constructed:

> logvolume = log(volume)

> logdiameter = log(diameter)

> logheight = log(height)

> plot(logdiameter,logvolume)

> plot(logheight,logvolume)

Next, the multiple regression model of the logarithmic volume on the logarithmic diameter and the log-
arithmic height is fitted, and the residual plots and the QQ-plot are constructed (Figure 1.6). Moreover,
the plot of Cook’s distances is constructed (Figure 1.7).

> model2 = lm(logvolume ~ logdiameter + logheight)

> pred2 = predict(model2)

> stdres2 = stdres(model2)

> plot(pred2,stdres2)

> plot(logdiameter,stdres2)

> plot(logheight,stdres2)

> qqnorm(stdres2)

> cookd = cooks.distance(model2)

> plot(logvolume,cookd)

Finally, the parameter estimates are obtained with summary, which gives the following output:

> summary(model2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.9907 1.0488 -4.759 4.96e-05 ***

logdiameter 2.1381 0.0982 21.771 < 2e-16 ***

logheight 0.6490 0.2627 2.471 0.0196 *

Residual standard error: 0.1151 on 29 degrees of freedom

Multiple linear regression without observation no. 26

Finally, the analysis without the suspicious observation, no. 26. The variables without this observation
are easily constructed as follows:
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> logvolume3 = logvolume[-26]

> logdiameter3 = logdiameter[-26]

> logheight3 = logheight[-26]

The multiple linear regression model if fitted with only 31 observations, parameter estimates are ob-
tained with summary as before, and confidence limits are found by confint (the residual plots, the QQ-
plot and the Cook’s plot are constructed exactly as before so the commands are left out):

> model3 = lm(logvolume3 ~ logdiameter3 + logheight3)

> summary(model3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.63162 0.79979 -8.292 5.06e-09 ***

logdiameter3 1.98265 0.07501 26.432 < 2e-16 ***

logheight3 1.11712 0.20444 5.464 7.81e-06 ***

Residual standard error: 0.08139 on 28 degrees of freedom

> confint(model3)

2.5 % 97.5 %

(Intercept) -8.269912 -4.993322

logdiameter3 1.828998 2.136302

logheight3 0.698353 1.535894

Prediction

In order to compute the prediction of log-volume for a tree with diameter 12 and height 75, we first
create a new data set with the relevant values of the explanatory variables corresponding to model3.
We use predict to compute the prediction and the prediction interval. Had we wanted the confidence
interval instead (that is, an interval estimate for the expected volume of such a tree), we should write
interval="prediction".

> new = data.frame(logdiameter3=log(12), logheight3=log(75))

> pred = predict(model3, newdata= new, interval="prediction")

> pred

fit lwr upr

[1,] 3.118250 2.948598 3.287901

> exp(pred)

fit lwr upr

[1,] 22.60677 19.07918 26.78659

1.2.2 SAS programs and output

We use proc glm for the analysis of (multiple) regression models since it works for linear models in gen-
eral. Note that proc reg could also be used (and has special features for regression which are sometimes
useful).
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Example 1.1 (continued)

Reading the data into SAS

Suppose that the dataset is saved in the ASCII-file cherry.txt as follows:

diameter height volume

8.3 70 10.3

8.6 65 10.3

8.8 63 10.2

. .

. . [more datalines here]

. .

20.6 87 77.0

Then a SAS-dataset cherry is constructed (and printed) in the following data-step. The path to the file
should of course be specified with the file name. The option firstobs=2 is needed because the first line
is not a data line.

data cherry;

infile ’c:\cherry.txt’ firstobs=2;

input diameter height volume;

proc print;

run;

Scatter plots of response against covariates

The scatter plots from Figure 1.3 are created with proc gplot as follows:

proc gplot data=cherry;

plot volume*diameter=1 volume*height=1;

run;

Multiple linear regression on the original numbers

The multiple regression of volume on diameter and height is analyzed with proc glm. In the model-
statement the response is on the right side of the equation sign while the explanatory variables are on
the right side. As defualt proc glm makes both type I tests (successive tests) and type III tests (parallell
tests); with the option ss3 we ask SAS to only give the type III versions.

In this case we also make a new dataset outvol where the predicted values are saved as p and the
standardized residuals (called student in SAS) are saved in the variable sres. The dataset also contains
the original variables from the cherry-dataset. The residual plots similar to those in Figure 1.4 are
constructed as the plots above, using the dataset outvol. The QQ-plot of the standardized residuals
is made with qqplot in proc univariate. A straight line corresponding to the mean and standard
deviation is added due to the option normal(mu=est sigma=est).

proc glm data=cherry;

model volume = diameter height / ss3;

output out=outvol student=sres predicted=p;

run;
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proc gplot data=outvol;

plot sres*p=1 sres*diameter=1 sres*height=1;

run;

proc univariate data=outvol;

qqplot sres / normal(mu=est sigma=est);

run;

The output from proc glm (slightly edited) looks like this:

The GLM Procedure

Dependent Variable: volume

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 8492.936974 4246.468487 166.07 <.0001

Error 29 741.538026 25.570277

Corrected Total 31 9234.475000

R-Square Coeff Var Root MSE volume Mean

0.919699 16.18793 5.056706 31.23750

Source DF Type III SS Mean Square F Value Pr > F

diameter 1 6667.711625 6667.711625 260.76 <.0001

height 1 9.526974 9.526974 0.37 0.5464

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept -44.87057864 10.62343728 -4.22 0.0002

diameter 5.16058067 0.31957874 16.15 <.0001

height 0.09446500 0.15476086 0.61 0.5464

In the top we find the residual mean square error, s2 = 25.57. The other parameter estimates are found
in the bottom together with their standard errors and the t-tests for the hypothesis that the parameter
equals zero. We see that β̂0 = −44.87 (the intercept), β̂1 = 5.16 (the effect of diameter), β̂2 = 0.09
(the effect of height). Note that the tests are also carried out as F-tests above the parameter estimates
(parallell tests).

Multiple linear regression on the log-transformed numbers

Next, to the analysis of the log-transformed data. First, a new dataset logcherry with the log-trans-
formed is constructed. Then the multiple regression analysis of the logarithmic volume on the logarith-
mic diamater and the logarithmic height is carried out as above. Note that the plot of Cook’s distances
(Figure 1.7) is also made; they are called cookd in SAS.

data logcherry;

set cherry;

logvolum = log(volume);

logheig = log(height);

logdiam = log(diameter);
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run;

proc gplot data=logcherry;

plot logvolum*logdiam=1 logvolum*logheig=1;

run;

proc glm data=logcherry;

model logvolum = logdiam logheig;

output out=outvol student=sres predicted=p cookd=cook;

run;

proc univariate data=outvol;

qqplot sres / normal(mu=est sigma=est);

run;

An edited version of the output:

The GLM Procedure

Dependent Variable: logvolum

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 8.69325063 4.34662531 328.08 <.0001

Error 29 0.38421406 0.01324876

Corrected Total 31 9.07746469

R-Square Coeff Var Root MSE logvolum Mean

0.957674 3.487375 0.115103 3.300570

Source DF Type III SS Mean Square F Value Pr > F

logdiam 1 6.27988388 6.27988388 474.00 <.0001

logheig 1 0.08088327 0.08088327 6.10 0.0196

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept -4.990707768 1.04879552 -4.76 <.0001

logdiam 2.138067353 0.09820491 21.77 <.0001

logheig 0.648977960 0.26265654 2.47 0.0196

Multiple linear regression without observation no. 26

The same analysis is now carried out without observation no. 26 which has diameter equal to 16.9 (as
the only observation). A dataset, logcherry2 is constructed without this observation and the multiple
regression model is fitted as above. We also ask for the confidence limits for the mean parameters. This
is done with the option clparm in the model-statement.

data logcherry2;

set logcherry;

if diameter = 16.9 then delete;

run;
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proc glm data=logcherry2;

model logvolum = logdiam logheig / clparm;

output out=outvol student=sres predicted=p cookd=cook;

run;

The corresponding output:

The GLM Procedure

Dependent Variable: logvolum

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 8.12322615 4.06161308 613.19 <.0001

Error 28 0.18546337 0.00662369

Corrected Total 30 8.30868953

R-Square Coeff Var Root MSE logvolum Mean

0.977678 2.486793 0.081386 3.272732

Source DF Type III SS Mean Square F Value Pr > F

logdiam 1 4.62750362 4.62750362 698.63 <.0001

logheig 1 0.19778034 0.19778034 29.86 <.0001

Standard

Parameter Estimate Error t Value Pr > |t| 95% Confidence Limits

Intercept -6.631617126 0.79978973 -8.29 <.0001 -8.269912123 -4.993322129

logdiam 1.982649910 0.07501061 26.43 <.0001 1.828997636 2.136302185

logheig 1.117123333 0.20443706 5.46 <.0001 0.698352998 1.535893668

Prediction

In order to compute the prediction of log-volume for a tree with diameter 12 and height 75, we first
create a dataset with these values on the log-scale (the data set tmp). Then the values are appended to
the dataset logcherry2 with the log-values. The new dataset pred includes the 31 data points (not no.
26) as well as the values for prediction.

data tmp;

logdiam = log(12);

logheig = log(75);

run;

data pred;

set logcherry2 tmp;

run;

Then the new dataset is used in a proc glm. The output with predicted values and lower and upper
limits of the 95% prediction intervals are written to the dataset predout which is printed. Had we
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wanted the confidence interval instead (that is, an interval estimate for the expected volume of such a
tree), we should write l95m and u95m instead of l95 and l95.

proc glm data=pred;

model logvolum = logdiam logheig;

output out=predout predicted=p l95=lowerpi u95=upperpi;

run;

proc print data = predout;

run;

The output from the proc print is like this:

Obs diameter height volume logvolum logheig logdiam p lowerpi upperpi

1 8.3 70 10.3 2.33214 4.24850 2.11626 2.31027 2.13138 2.48916

2 8.6 65 10.3 2.33214 4.17439 2.15176 2.29788 2.11777 2.47799

. . . . . . . . . .

. . . . . . . . . .

31 20.6 87 77.0 4.34381 4.46591 3.02529 4.35545 4.17433 4.53657

32 . . . . 4.31749 2.48491 3.11825 2.94860 3.28790

1.3 Polynomial regression

A special case of the multiple regression models occurs when powers of a covariate are used as explana-
tory variables. Consider the case with a response, y, and a single covariate, x. The polynomial regression
of order p is given by

yi = β0 + β1xi + β2x2
i + . . . + βpx

p
i + ei, i = 1, . . . , n,

where as usual the ei’s are assumed to independent and N(0, σ2)-distributed. The mean structure of the
model describes y as a polynomium in x of order p, and the β’s are the coefficients in the polynomium.

For example, a scatter plot of y against x might show “curvature”, in the sense that the points “bend off”
compared to a straight line. The curvature will be even more clear in the residual plot for the simple
linear regression of y on x: negative residuals for small and large values of x, positive for medium values
of x. A quadratic model, that is, a polynomial of order two, might then be appropriate:

yi = β0 + β1xi + β2x2
i + ei, i = 1, . . . , n, (1.2)

The polynomial model is a multiple linear regression model with the k’th covariate equal to the k’th
power of the x, and the analysis hence follows the scheme from Section 1.2.

Example 1.2 (Optimal supply of nitrogen) An experiment of the effect of nitrogen supply on the yield
of winter wheat has been carried out. The purpose is to be able to give advice to farmers about the
optimal supply. The yield for six different amounts of supplied nitrogen are given in Table 1.3. This is
of course an extremely small data material, and one should be very careful not to “overfit” such data,
but let us analyze the data, anyway.

The data are plotted in Figure 1.10. The relationship between nitrogen supply and yield is obviously
not linear — there is a clear curvature. We fit the quadratic model, see (1.2), with the yield as response
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Nitrogen (kg/ha) Yield (hkg/ha)

0 23.1590

50 38.6801

100 54.7080

150 57.4650

200 62.7166

250 62.3278

Table 1.3: The nitrogen data.
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Figure 1.10: The nitrogen data: the data points with the estimated second order polymial.

and nitrogen supply and squared nitrogen supply as covariates. The estimated coefficients (and their
standard errors) are

β̂0 = 23.2054 (1.9575), β̂1 = 0.3737 (0.03683), β̂2 = −0.0008761 (0.0001414)

and the residual variance is estimated to s2 = 4.66. The estimated (solid) curve in Figure 1.10 is thus
given by

y = β̂0 + β̂1x + β̂2x2 = 23.2054 + 0.3737 · x − 0.0008761 · x2.

The experimenter was particularly interested in an optimal supply of nitrogen, that is, the amount of
nitrogen that gives the highest yield. We easily get an estimate of this optimal supply from the quadratic
model: if β2 is negative then the largest value of β0 + β1x + β2x2 is obtained for x = −β1/(2β2). Hence
the optimal nitrogen supply is estimated to

− β̂1

2β̂2

= − 0.3737

2 · (−0.0008761)
= 213.27.

Computation of the standard error and the confidence interval for the optimal nitrogen supply are not
straight-forward because the function −β1/(2β2) is not linear in (β1, β2). However, an approximate
95%-confidence interval turns out to be (164.20, 262.34). This is extremely wide (and probably useless
in practice), due to the small number of observations. �
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1.3.1 R-programs and output

Example 1.2 (continued)

Reading the data

Since the dataset has only six observations we enter them manually. Furthermore, the squared nitrogen
supply is constructed and called nitrogen2.

> nitrogen = c(0, 50, 100, 150, 200, 250)

> yield = c(23.1590, 38.6801, 54.7080, 57.4650, 62.7166, 62.3278)

> nitrogen2 = nitrogen*nitrogen

The quadratic model

The quadratic model is fitted with lm with yield as response and nitrogen and nitrogen2 as covariates.
The parameter estimates can be read off from the summary-output.

> model1 = lm(yield ~ nitrogen + nitrogen2)

> summary(model1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.2054107 1.9575403 11.854 0.00129 **

nitrogen 0.3737180 0.0368264 10.148 0.00204 **

nitrogen2 -0.0008761 0.0001414 -6.196 0.00847 **

Residual standard error: 2.16 on 3 degrees of freedom

Now to the construction of Figure 1.10 where the data points are plotted with the estimated second
order polynomium. First, the data points are plotted with plot as usual. Next, the estimated function
is superimposed with the points-command. points works similar to plot, except that it superimposes
the points/curve onto the present plot, instead of making a new plot. In order to make a smooth curve
we construct a vector x of length 50 with equidistant values from zero to 250. For each of the 50 x-values
we compute the value of the estimated polynomium,

β̂0 + β̂1x + β̂2x2 = 23.2054 + 0.3737 · x − 0.0008761 · x2

and store the results in the vector y. Finally y is plotted against x with points. The option type="l"

has the effect that the 50 points are joined (by linear interpolation), so a curve rather than 50 points are
plotted.

> plot(nitrogen,yield)

> x = seq(0,250,length=50)

> y = 23.2054 + 0.3737 * x - 0.0008761 * x^2

> points(x,y,type="l",lwd=2)
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1.3.2 SAS-programs and output

Example 1.2 (continued)

Reading the data

The data are read into the dataset nitrogen by cards. Moreover, the variable nitro2 with squared
values is constructed.

data nitrogen;

input nitro yield;

nitro2 = nitro*nitro;

cards;

0 23.1590

50 38.6801

100 54.7080

150 57.4650

200 62.7166

250 62.3278

;

run;

The quadratic model

The quadratic model with nitro and nitro2 is fitted with proc glm in the usual way:

proc glm data=nitrogen;

model yield = nitro nitro2 / ss3;

run;

The output is as follows:

The GLM Procedure

Dependent Variable: yield

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 1226.014110 613.007055 131.41 0.0012

Error 3 13.994999 4.665000

Corrected Total 5 1240.009109

R-Square Coeff Var Root MSE yield Mean

0.988714 4.333351 2.159861 49.84275

Source DF Type III SS Mean Square F Value Pr > F

nitro 1 480.4205493 480.4205493 102.98 0.0020

nitro2 1 179.0973266 179.0973266 38.39 0.0085

Standard

Parameter Estimate Error t Value Pr > |t|
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Intercept 23.20541071 1.95754033 11.85 0.0013

nitro 0.37371796 0.03682638 10.15 0.0020

nitro2 -0.00087611 0.00014140 -6.20 0.0085

A plot corresponding to that in Figure 1.10 is made as follows. First pairs of fictious nitrogen values and
the corresponding estimated yield values are constructed and saved in the dataset fit. The x-values
are 0, 5, . . . , 250. The estimated values, y, are computed from the parameter estimates. Then the two
datasets, nitrogen and fit are merged because we want to plot variables from both in the same plot.
Then the six data points and the (x,y)-values are plotted in the same plot. This is obtained by overlay.
Note that the data points are points whereas the (x,y)-values are joined to a curve; this is obtained with
symbol1 and symbol2.

data fit;

do x = 0 to 250 by 5;

y = 23.2054 + 0.3737 * x - 0.0008761 * x*x;

output;

end;

run;

data fit;

merge fit nitrogen;

run;

symbol1 i=none v=dot c=black;

symbol2 i=join v=none c=black;

proc gplot data = fit;

plot yield*nitro=1 y*x = 2 / overlay;

run;
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Chapter 2

Models with both factors and covariates

Usually the term regression models is used for models where all the explanatory variables are quantitative
and are used as covariates. If all the explanatory variables are qualitative, that is, each variable groups
the experimental units into certain groups we usually speak about analysis of variance (ANOVA). In this
case the explanatory variables are also called factors. In this chapter we consider models where there
are both factors and covariates. In that case we sometimes use the term analysis of covariance (ANCOVA).
Models of all these types are linear models.

Actually, all three model types can be thought of as multiple regression models if certain so-called
dummy-variables are introduced. This is “just” a matter of parameterization, and we will not discuss
this issue any further. Rather, we will think of the models in what we believe is a more natural way: as
models with both covariates and factors as explanatory variables.

2.1 A few general comments on computational aspects

Gaussian linear models are fitted with lm in R and with proc gml in SAS. In both programs it is important
to specify if (numeric) variables are to be treated as factors or covariates. In R, we write factor(x) if
a numerical variable x is to be treated as a factor. In SAS the variable should be included in a CLASS

statement in order to be treated as a factor.

R and SAS use different default parameterizations which sometimes makes it a litte hard to compare
output from the two programs directly. But, indeed, they come out with the same results. It is very
important to be able to read off the parameter estimates and test summaries correctly, so make sure you are able
to do so in R or SAS, whatever program you use!

Note that it is often useful to specify the same model in different ways (with different parameterizations).
One specification may be useful for the model reduction part of the analysis whereas another may be
more adequate for reporting the results. Again, make sure you understand the different specifications
of the models. We will pay quite some attention to these matters in the computer sections.

2.2 An example

Let us consider a simple example with one factor and one covariate.
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Example 2.1 (Cauliflowers) In a growth study the number of leaves on cauliflower plants were counted
at seven dates in 1956 and at seven dates at 1957. At each date 10 plants were examined, and the average
number of leaves was computed. Moreover, the accumulated day degrees over 32◦F was registered and
divided by 100.

Year 1956 Year 1957
day degrees leaves day degrees leaves

4.5 3.8 4.5 6.0
7.5 6.2 8.0 8.5
9.5 7.2 9.5 9.1

10.5 8.7 11.5 12.0
13.0 10.2 13.0 12.6
16.0 13.5 14.0 13.3
18.0 15.0 16.5 15.2

Table 2.1: Cauliflowers: the data.

The data are listed in Table 2.1 and plotted in the left part of Figure 2.1. The two lines are the estimated
lines from the simple linear regressions for each year separately. We see that the number of cauliflower
leaves increases as the number of day degrees increases, and that the relationships seem to be approxi-
mately linear for both years. Also, the plot indicates that the two lines are parallell, but we will test that
hypothesis in a statistical model in a moment.
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Figure 2.1: Caulifolowers: The data with fitted lines for each year (left) and residual plot for model with
different slopes.

As a starting point we take the model with two different regression lines for 1956 and 1957 (different
intercepts and different slopes). For the i’th observation, let yi be the average number of cauliflower
leaves, xi the day degrees and yeari be either 1956 or 1957. The model may then be written as

yi = α(yeari) + β(yeari) · xi + ei

where the ei’s are independent N(0, σ2). The intercepts are α(1956) and α(1957), and the slopes are
β(1956) and β(1957). The residual plot for the model is shown in the right part of Figure 2.1. It does not
give rise to any objections. Neither does the QQ-plot (not shown).



2.2. AN EXAMPLE 29

It is important that year is used correctly, as a factor (qualitative variable). The variable is numeric with
values 1956 and 1957, but the actual values do not matter — they could as well have been named 1 and
2 (or A and B, or whatever). In R, remember to use factor(year); in SAS, remember to put year in a
CLASS statement. The dependence on slope of year is specified to R and SAS as an interaction between
the year factor and the day degrees covariate.

From the computer-output we get the estimates (see the details in the computers sections)

α̂(1956) = −0.249; β̂(1956) = 0.840

α̂(1957) = 2.276; β̂(1957) = 0.789

s2 = 0.1653.

One of the interesting hypotheses is that of a common slope (parallell lines) for the two years, H0 :
β(1956) = β(1957). From the estimates we find that β̂(1957)− β̂(1956) = −0.051 which turns out to
have a standard error of 0.054. The hypothesis is thus tested with a t-test on

t =
−0.051

0.054
= −0.934

which is t(10)-distributed under H0. The corresponding p-value is 0.37, so the hypothesis of parallell
lines is not rejected.

We therefore fit the model with common slope

yi = α(yeari) + β · xi + ei (2.1)

From the computer output we find that α̂(1957) − α̂(1956) = 1.9624 with a standard error of 0.2162.
Hence, the number of leaves is significantly larger in 1957 than in 1956, even after adjustment for day
degrees (p < 0.0001). The hypothesis H0 : β = 0 is also rejected (p < 0.0001) so the day degrees has
significant effect on the number of leaves.

In other words, model (2.1) cannot be reduced and is the final model. We find the following estimates
of the mean parameters (with standard errors in parenthesis):

α̂(1956) = −0.0097 (0.3365); α̂(1957) = 1.9528 (0.3298); β̂ = 0.8186 (0.0266)

Moreover, the variance estimate is s2 = 0.1634. �

In the example we compared two regression lines. In particular we tested the hypothesis that the two
slopes were the same with a t-test. A t-test can be used because the hypothesis reduces the number of
parameters in the model with one. Had there been three regression lines (three years) the hypothesis of
common slopes would have been β(1) = β(2) = β(3), reducing the number of parameters by two (from
three intercepts and three slopes to three intercepts and one slope). In that case the hypothesis should
have been tested with an F-test.

Let us remind ourselves of the general F-test for linear hypothesis testing in linear models. Consider

two models, A and B, where model B is a sub-model of model A. Let SSA
e and SSB

e be the corresponding

residual sums of squares, and DFA
e and DFB

e be residual degrees of freedom. Then the test for model B
against model A can be carried out as a test on

FAB =
(SSB

e − SSA
e )/(DFB

e − DFA
e )

SSA
e /DFA

e

(2.2)

which is F-distributed with (DFB
e − DFA

e , DFA
e ) degrees of freedom if model B is true. The test is one-

sided with large values critical (large values indicate that model B is not true).
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2.2.1 R programs and output

Example 2.1 (continued)

Reading the data into R and construction the plot of the data

Suppose that the dataset is saved in the ASCII-file cauli.txt as follows:

year ddays leaves

1956 4.5 3.8

1956 7.5 6.2

. .

. . [more datalines here]

. .

1957 16.5 15.2

The data is read into R and attached. Moreover, a year-factor named yearfac is constructed which
should be used in the analysis.

> cauli = read.table("cauli.txt", header=T)

> attach(cauli)

> yearfac = factor(year)

The left plot in Figure 2.1 is constructed as follows. First an “empty” plot with only axes and labels
is constructed (type="n") in order to get reasonable axes. Next, the data points for 1956 and 1957 are
added with points and two different symbols. Then the simple linear regressions for each year are fitted
and the parameters are used for the fitted lines which are added to the plot with abline.

> plot(ddays,leaves)

> points(ddays[year==1956],leaves[year==1956],pch=16)

> points(ddays[year==1957],leaves[year==1957],pch=1)

> model1956 = lm(leaves[year==1956] ~ ddays[year==1956])

### The estimated line is: -0.24915 + 0.83980 * x for 1956

> abline(-0.24915,0.83980)

> model1957 = lm(leaves[year==1957] ~ ddays[year==1957])

### The estimated line is: 2.27622 + 0.78918 * x for 1957

> abline(2.27622,0.78918)

Analysis with test for parallell lines (common slope)

The model with different slopes is specified with an interaction between yearfac and ddays. The model
can be specified in various ways; model1 is appropriate for testing for parallell lines.

> model1 = lm(leaves ~ yearfac + ddays + yearfac:ddays)

> summary(model1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.24915 0.42452 -0.587 0.57028

yearfac1957 2.52536 0.64032 3.944 0.00276 **
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ddays 0.83980 0.03506 23.950 3.66e-10 ***

yearfac1957:ddays -0.05062 0.05416 -0.935 0.37199

Residual standard error: 0.4066 on 10 degrees of freedom

The reported estimates are

α̂(1956) = −0.249; β̂(1956) = 0.840;

α̂(1957)− α̂(1956) = 2.525; β̂(1957)− β̂(1956) = −0.051

so we get

α̂(1956) = −0.249; β̂(1956) = 0.840

α̂(1957) = −0.249 + 2.525 = 2.276; β̂(1957) = 0.840− 0.051 = 0.789

These estimates would have come out immediately (supplied with standard errors) had we specified
the model without the main effect of ddays and with no intercepts as follows:

> model1a = lm(leaves ~ yearfac + yearfac:ddays - 1)

> summary(model1a)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

yearfac1956 -0.24915 0.42452 -0.587 0.570283

yearfac1957 2.27622 0.47937 4.748 0.000782 ***

yearfac1956:ddays 0.83980 0.03506 23.950 3.66e-10 ***

yearfac1957:ddays 0.78918 0.04128 19.118 3.33e-09 ***

Residual standard error: 0.4066 on 10 degrees of freedom

It is important to realize that the two models, model1 and model1a, are identital — only the parameter-
izations differ. Very often, just as here, one specification of the model is the most useful for hypothesis
testing whereas another a most useful for reporting the estimates and confidence intervals.

Already from the summary(model1)-output above we see that the interaction between yearfac and dday

is not significant (p = 0.37), so there is no indication of different slopes. We can see this from the
summary-output only because the year-factor has no more than two levels. Had there been three years,
say, the interaction would have been described by two parameters, and the hypothesis should be tested
with the general F-test (2.2). In R this is easily carried out by fitting the model under the hypotheses and
comparing the two with anova. In fact, this will be our usual way of testing hypotheses in linear models.
In this case we thus fit the model with common slope and use anova:

> model2 = lm(leaves ~ yearfac + ddays)

> anova(model2,model1)

Analysis of Variance Table

Model 1: leaves ~ yearfac + ddays

Model 2: leaves ~ yearfac + ddays + yearfac:ddays

Res.Df RSS Df Sum of Sq F Pr(>F)

1 11 1.79725

2 10 1.65286 1 0.14439 0.8736 0.372

We get the same p-value (of course), 0.37. We thus accept model2 and use summary to see the results. We
also fit the model without intercept:
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> summary(model2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.009691 0.336543 -0.029 0.978

yearfac1957 1.962451 0.216193 9.077 1.93e-06 ***

ddays 0.818580 0.026570 30.808 4.99e-12 ***

Residual standard error: 0.4042 on 11 degrees of freedom

> model2a = lm(leaves ~ yearfac + ddays - 1)

> summary(model2a)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

yearfac1956 -0.009691 0.336543 -0.029 0.9775

yearfac1957 1.952760 0.329796 5.921 0.0001 ***

ddays 0.818580 0.026570 30.808 4.99e-12 ***

Residual standard error: 0.4042 on 11 degrees of freedom

From model2 we easily find the relavant t-values and p-values for the hypotheses H0 : α(1956) =
α(1957) and H0 : β = 0. From model2a we read off the estimates.

2.2.2 SAS programs and output

Example 2.1 (continued)

Reading the data into SAS

Suppose that the dataset is saved in the ASCII-file cauli.txt as follows:

year ddays leaves

1956 4.5 3.8

1956 7.5 6.2

. .

. . [more datalines here]

. .

1957 16.5 15.2

The the dataset saved in the SAS dataset cauli by the following program lines:

data cauli;

infile ’c:\cauli.txt’ firstobs=2;

input year ddays leaves;

run;

The plot of the data

The left plot of Figure 2.1 is constructed as follows. First, a dataset with only the observations from 1956
is made (cauli1). This is used for the simple linear regression of leaves on day degrees for 1956. The
predicted values are needed for the estimates line and are saved in the dataset out1. Similarly for the
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1957 observations. Then the two output datasets are merged, in order to make one plot with both years.
Finally, the plots are made with gplot as usual.

data cauli1;

set cauli;

ddays1 = ddays;

leaves1 = leaves;

where year=1956;

proc glm data = cauli1;

model leaves1 = ddays1;

output out = out1 predicted = p1;

run;

data cauli2;

set cauli;

ddays2 = ddays;

leaves2 = leaves;

where year=1957;

proc glm data = cauli2;

model leaves2 = ddays2;

output out = out2 predicted = p2;

run;

data forplot;

merge out1 out2;

run;

symbol1 i=none v=dot c=black;

symbol2 i=none v=circle c=black;

symbol3 i=join v=none c=black;

proc gplot data = forplot;

plot leaves1*ddays1=1 leaves2*ddays2=2 p1*ddays1=3 p2*ddays=3 / overlay;

run;

Analysis with test for parallell lines

The model with different slopes is specified with an interaction between year and day degrees. The
model can be specified in various ways corresponding to different parameterizations. some are more
appropriate for model reduction (hypothesis testing); some are more appropriate for picking out the
parameter estimates.

The first one is suitable for testing:

proc glm data = cauli;

class year;

model leaves = year ddays year*ddays / ss3 solution;

output out = cauliout predicted = pred student = stdres;

run;

proc gplot data = cauliout;

plot stdres*pred;

run;
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The output is the following (slightly edited as usual):

The GLM Procedure

Class Level Information

Class Levels Values

year 2 1956 1957

Dependent Variable: leaves

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 3 165.6764286 55.2254762 334.12 <.0001

Error 10 1.6528571 0.1652857

Corrected Total 13 167.3292857

Source DF Type III SS Mean Square F Value Pr > F

year 1 2.5709280 2.5709280 15.55 0.0028

ddays 1 149.5113969 149.5113969 904.56 <.0001

ddays*year 1 0.1443907 0.1443907 0.87 0.3720

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 2.276215022 B 0.47936770 4.75 0.0008

year 1956 -2.525364863 B 0.64031966 -3.94 0.0028

year 1957 0.000000000 B . . .

ddays 0.789175258 B 0.04127925 19.12 <.0001

ddays*year 1956 0.050622829 B 0.05416197 0.93 0.3720

ddays*year 1957 0.000000000 B . . .

We immediately see that the interaction between year and day degress is not significant (p = 0.37), so
there is no indication of different slopes.

The reported estimates are

α̂(1957) = 2.276; β̂(1957) = 0.789;

α̂(1956)− α̂(1957) = −2.525; β̂(1956)− β̂(1957) = 0.051

so we get

α̂(1957) = 2.276; β̂(1957) = 0.789

α̂(1956) = 2.276− 2.525 = −0.249; β̂(1956) = 0.789 + 0.051 = 0.840

These estimates would have come out immediately (supplied with standard errors) had we specified
the model without the main effect of day degrees and with no intercept:

proc glm data = cauli;

class year;

model leaves = year year*ddays / noint ss3 solution;

run;

with output
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The GLM Procedure

Dependent Variable: leaves

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 1591.797143 397.949286 2407.64 <.0001

Error 10 1.652857 0.165286

Uncorrected Total 14 1593.450000

Source DF Type III SS Mean Square F Value Pr > F

year 2 3.7836322 1.8918161 11.45 0.0026

ddays*year 2 155.2185715 77.6092857 469.55 <.0001

Standard

Parameter Estimate Error t Value Pr > |t|

year 1956 -0.249149841 0.42451841 -0.59 0.5703

year 1957 2.276215022 0.47936770 4.75 0.0008

ddays*year 1956 0.839798087 0.03506484 23.95 <.0001

ddays*year 1957 0.789175258 0.04127925 19.12 <.0001

It is important to realize that the two models are identital — only the parameterizations differ. Very
often, just as here, one specification of the model is the most useful for hypothesis testing whereas
another a most useful for reporting the estimates and confidence intervals (but not for testing).

Since the hypotheses of parallell lines was not rejected, we fit the model with a common slope. First a
version suitable for testing:

proc glm data = cauli;

class year;

model leaves = year ddays / ss3 solution;

run;

with output

The GLM Procedure

Dependent Variable: leaves

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 165.5320379 82.7660190 506.57 <.0001

Error 11 1.7972478 0.1633862

Corrected Total 13 167.3292857

Source DF Type III SS Mean Square F Value Pr > F

year 1 13.4626351 13.4626351 82.40 <.0001

ddays 1 155.0741808 155.0741808 949.13 <.0001

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 1.952760141 B 0.32979633 5.92 0.0001

year 1956 -1.962451499 B 0.21619295 -9.08 <.0001
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year 1957 0.000000000 B . . .

ddays 0.818580247 0.02657046 30.81 <.0001

We see that degree days and year are both significant. The α- and β-estimates are most easily obtained
by fitting the model model with no intercept (noint):

proc glm data = cauli;

class year;

model leaves = year ddays / noint ss3 solution;

run;

with output (strongly edited, this time):

Standard

Parameter Estimate Error t Value Pr > |t|

year 1956 -0.009691358 0.33654257 -0.03 0.9775

year 1957 1.952760141 0.32979633 5.92 0.0001

ddays 0.818580247 0.02657046 30.81 <.0001



Chapter 3

Non-linear regression

In Chapters 1 and 2 we have extended the simple linear regression model by incorporating more ex-
planatory variables (of different kinds) in the model. In this chapter we will move in another direction,
and consider non-linear regression models. Note that we then leave the nice world of linear models
where all distribution results are exact (provided that the model is true). However, we still assume that
the measurement errors are Gaussian and the results from the linear models hold approximately. For
example, the test statistic (2.2) still makes sense and is approximately F-distributed.

3.1 General comments

Consider the situation with a response variable, y and a single covariate, x. Assume that the plot of y
against x shows a non-linear relationship. We have already discussed two ways of handling non-linear
relationships: In some cases a linear relationship can be obtained after transformation of the response
and/or the covariate. In other cases a quadratic (or another polynomial) model is perhaps appropriate.

In yet other cases none of these solutions apply. Sometimes there is a theoretical model from the subject
area, for example a physical law, suggesting a certain (non-linear) relationship. Or perhaps previous
studies have shown a particular non-linear relationship. In both cases the knowledge can form the basis
for a statistical model, in this case a non-linear regression model.

Assume that theory claims that y ≈ f (x, θ1, . . . , θp) for a known non-linear function f and unknown
parameters θ1, . . . , θp. The corresponding non-linear regression model is then given by

yi = f (xi, θ1, . . . , θp) + ei, i = 1, . . . , n

where as usual e1, . . . , en ∼ N(0, σ2) are independent. In particular we assume variance homogeneity.
We are interested in estimating the relationship between x and y, that is, we are interested in estimating
the parameters θ1, . . . , θp.

We use the least squares estimates. In other words, (θ̂1, . . . θ̂p) is the vector of values for which

n

∑
i=1

(
yi − f (xi, θ1, . . . , θp)

)2

is the least possible. For linear models ( f linear in the θ’s) the least squares estimator can be found
explicit, but for non-linear models the least squares function must be mimimized by the use of some
numerical algorithm.

37
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In R parameters are estimated with the nls-function. Apart from the function f defining the model some
starting values of θ1, . . . , θp must be supplied to nls. It is the starting values for the numerical procedure.
In SAS parameters are estimates with proc nlin. Again starting values, or at least a range of possible
starting values, must be specified. See the computer sections for details on these issues.

For some models (as the one in the example below) the interpretation of the parameters is straight-
forward and good starting values can easily be guessed from the graph of y against x. For other models
it might be much more difficult to come up with good starting values, and one may have to try different
starting values before the algorithm converges.

Note that polynomial models are often chosen on the basis on empirical findings rather than on theoret-
ical grounds: it turns out that a certain polynomial model fits the data well, but there is no theoretical
justification for the model. On the other hand, a non-linear model is most often based on some previous
knowledge and one has to check if the model fits the actual data reasonably well.

3.2 An example

Let us consider an example on chemical reactions.

Example 3.1 (Puromycin) The reaction time (or actually the reaction velocity) for a certain chemical
process has been measured for six concentrations of one of the chemicals involved, namely the enzyme
puromycin. For each of the six concentrations there are two independent measurements of the reaction
time. The data is listed in Table 3.1, and the reaction time is plotted against concentration in Figure 3.1.

Concentration Reaction time
0.02 76 47
0.06 97 107
0.11 123 139
0.22 159 152
0.56 191 201
1.10 207 200

Table 3.1: The puromycin data.

Evidently, the reation time increases as the concentration of puromycin increases, and the relationship is
clearly not linear. Rather, it looks like the reaction time reaches a plateau as the concentration increases.
A possible model with this property is given by the so-called Michaelis-Menten kinetics which states that

y ≈ α · x

β + x
. (3.1)

Here α is the value at the plateau and β is the concentration for which the reaction time is half the value
at the plateau. (Check is yourself: what happens when x is very large and for x = β?)

First, note that if use the reciprocal function on both the right hand side and the left hand side, then (3.1)
gives

1

y
≈ β + x

α · x
=

1

α
+

β

α
· 1

x

suggesting a simple linear regression of 1/y on 1/x. The simple linear regression analysis is illustrated
in Figure 3.2. The left part shows 1/y plotted against 1/x, and the right part is the residual plot cor-
responding to the simple linear regression. Both plots indicate that the systematic part of the model is
indeed appropriate both also that the variance increases as 1/x increases. This is confirmed by Bartlett’s
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Figure 3.1: The puromycin data.

test for equal variances which compares the variances in the six concentration groups: the test statistic
is 12.9 which should be compared to the χ2(5)-distribution, giving a p-value of 0.016. All together, we
conclude that the simple linear regression of 1/y on 1/x does not describe the data well!
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Figure 3.2: The reciprocal puromycin data (left), and the residual plot for the simple linear regression of
the reciprocal data (right).

Looking at the plot of the raw data again (Figure 3.1) we see that there seems to variance homogeneity
on the original scale. This is confirmed by Bartlett’s test on the raw data: we now get a test statistic of
2.46 and a p-value of 0.78. This, together with the observation that the Michalis-Menten model seemed
to catch the mean structure of the data, suggests a non-linear regression model based on (3.1). Hence,
consider the model

yi =
α · xi

β + xi
+ ei (3.2)

with ei ∼ N(0, σ2) independent. We want to estimate the parameters α and β.

As mentioned already we use the least squares method for estimation. This requires numerical opti-
mization and the procedures in R and SAS need starting values for their algorithms. In this case it is easy
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to find good initial values, due to the interpretation of α and β. From Figure 3.1 200 and 0.1 seem to
be reasonable estimates of the plateau value and the concentration with half the maximal reaction time.
See the computer sections for details on how these values are used in R and SAS.

The least squares estimates turn out to be

α̂ = 212.6837 (6.9472); β̂ = 0.0641 (0.0083)

and the variance estimate is s2 = 119.5449. The 95% confidence intervals are (197.3, 229.3) for α and
(0.0469, 0.0861) for β.

Model validation for non-linear regression models is carried out through investigation of residuals as
for linear models, except that standardized residuals are no so easily accessible. Hence, we use the
raw residuals (and remember that we cannot use the actual values to detect outliers since they are not
standardized to have unit variance ).

The residuals are plotted against the predicted values in the right part of Figure 3.3. The plot is not
very informative because there are so few observations. More useful is perhaps the original plot of the
reaction time against concentration with the estimated curve superimposed. This figure is shown in the
left part of Figure 3.3. We see that the model describes the data reasonably well although it seems to
sligtly underestimate reaction time for large concentrations. It does not make much sense to make a
QQ-plot when there are only 12 observations.

0.0 0.2 0.4 0.6 0.8 1.0

50
10

0
15

0
20

0

Puromycin: non−linear regression

conc

re
ac

tio
n

50 100 150 200

−
10

0
10

20
Puromycin: non−linear regression

pred3

re
s3

Figure 3.3: Non-linear regression for the puromycin data. Observed and predicted vales (left): residual
plot (right).

For this particular dataset we can actually test the non-linear regression model against the oneway
ANOVA defined by the six concentration groups:

yi = γ(conci) + ei

This model allows the six expected reaction times to take any six values whereas model (3.2) restricts
the six expected values to satisfy the relation from the model. the ANOVA model with the F-test given
by (2.2) with the oneway ANOVA as model A and the non-linear regression model as model B. We get

F =
(1195.4− 697.5)/(10− 6)

697.5/6
= 1.07.

This value should be compared to the the F(4, 6)-distribution, giving a p-value of 0.45. Hence, the
non-linear regression model is indeed a valid model. Note that such a test (and neither the Bartlett’s
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tests for equal variances) would not have been possible had we had different concentrations for each
measurement.

Finally, let us illustrate what would have happened had Figure 3.1 inspired us to consider a quadratic
relationship between concentration and reaction time. The corresponding model given by

yi = β0 + β1xi + β2x2
i + ei

is illustrated in Figure 3.4. The left part shows the data points with the estimated parabola super-
imposed and the right part shows the residual plot. Both clearly reveal that the mean structure is mis-
specified. �
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Figure 3.4: Quadratic regression for the puromycin data. Observed and predicted vales (left): residual
plot (right).

3.2.1 R-programs and output

Example 3.1 (continued)

Reading the data into R and construction of scatter plot

Assume that the dataset is saved in the ascii-file puromycin.txt as follows:

conc reaction

0.02 76

0.02 47

0.06 97

. .

. . [more datalines here]

. .

1.10 200

The dataset is read into R and attached, so we can use the variable names conc and reaction. Moreover
the plot of reaction time against concentration (Figure 3.1) is constructed:
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> puromycin = read.table("puromycin.txt",header=T)

> attach(puromycin)

> plot(conc,reaction)

The analysis of the reciproval data

The variables with the reciproval values are constructed and named reconc and rereac. The reciprocal
variables are plotted against each other with plot, the simple linear regression of rereac on reconc

is fitted with lm, and the residual plot for regression model is constructed as for Example 1.1 (see the
figures in Figure 3.2). Moreover Bartlett’s test is carried out with bartlett.test.

> reconc = 1/conc

> rereac = 1/reaction

> plot(reconc,rereac)

> model1 = lm(rereac ~ reconc)

> library(MASS)

> pred1 = predict(model1)

> stdres1 = stdres(model1)

> plot(pred1,stdres1)

> bartlett.test(rereac, factor(reconc))

Bartlett test of homogeneity of variances

data: rereac and factor(reconc)

Bartlett’s K-squared = 13.8957, df = 5, p-value = 0.01629

Analysis with the non-linear model

First, Bartlett’s test for equal variances:

> bartlett.test(reaction, factor(conc))

Bartlett test of homogeneity of variances

data: reaction and factor(conc)

Bartlett’s K-squared = 2.4621, df = 5, p-value = 0.7822

The non-linear regression model is fitted with nls. nls requires a model formula, that is, the non-linear
function to be fitted. It is specified similarly to way models are specified in glm, with the response on
the left hand side of a “tilde” and the model expression on the right hand side. In this case we write
reaction ~ alpha*conc/(beta+conc). R also requires starting values for the algorithm that minimizes
the least squares function. The starting values are specified via a list with a value for each param-
eter, in this case with values of alpha and beta. We use 200 and 0.1 which are specified as start =

list(alpha=200, beta=0.1).

In summary, the non-linear model is fitted as below, the model fit is summarized by summary, and
confidence intervals are computed with confint.

> model3 = nls(reaction ~ alpha*conc / (beta+conc), start = list(alpha=200, beta=0.1))

> summary(model3)

Parameters:

Estimate Std. Error t value Pr(>|t|)
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a 2.127e+02 6.947e+00 30.615 3.24e-11 ***

b 6.412e-02 8.281e-03 7.743 1.57e-05 ***

Residual standard error: 10.93 on 10 degrees of freedom

Correlation of Parameter Estimates:

a

b 0.7651

> confint(model3)

Waiting for profiling to be done...

2.5% 97.5%

a 197.30205011 229.29022954

b 0.04692625 0.08616203

As usual, summary gives the parameter estimates, their standard errors and test for the hypotheses H0 :
α = 0 and H0 : β = 0. We are not at all interested in these hypotheses in this example. Moreover the
estimated correlation matrix of the parameter estimates, in this case just a single number, is given.

The predicted values and the raw residuals are computed and plotted as usual (right part of Figure 3.3).
R cannot compute standardized residuals for non-linear models, so recall that the actual values cannot
really be used for detecting outliers.

> pred3 = predict(model3)

> res3 = residuals(model3)

> plot(pred3,res3)

Test of non-linear regression against oneway ANOVA

The sum of squares from the non-linear regression is found from model3. Furthermore, the oneway
ANOVA is fitted, and the F-test is computed:

> model3

Nonlinear regression model

model: reaction ~ a * conc/(b + conc)

data: parent.frame()

a b

212.6836297 0.0641211

residual sum-of-squares: 1195.449

> model4 = lm(reaction ~ factor(conc))

> anova(model4)

Response: reaction

Df Sum Sq Mean Sq F value Pr(>F)

factor(conc) 5 30161.4 6032.3 51.891 7.386e-05 ***

Residuals 6 697.5 116.2

> (1195.4 - 697.5) / 4 / 116.2

[1] 1.071213

> 1- pf(1.07,4,6)

[1] 0.4471664
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Plot with data and expected values

Now consider the left part of Figure 3.3 where the data points are plotted with the estimated function
superimposed. First the data points are plotted with plot as usual. Next, the estimated function is
superimposed with the points-command. points works similar to plot, except that it superimposes
the points/curve onto the present plot, instead of making a new plot. In order to make a smooth curve
we construct a vector x of length 50 with equidistant values from zero to 1.1. For each of the 50 x-values
we compute the value of the estimated funtion

α̂ · x

β̂ + x
=

212.7 · x

0.06412 + x

and store the results in the vector y3. Finally y3 is plotted against x with points. The option type="l"

has the effect that the 50 points are joined (by linear interpolation), so a curve rather than 50 points are
plotted.

> plot(conc,reaction)

> x = seq(0,1.1,length=50)

> x

[1] 0.00000000 0.02244898 0.04489796 0.06734694 0.08979592 0.11224490

[7] 0.13469388 0.15714286 0.17959184 0.20204082 0.22448980 0.24693878

.

.

.

[49] 1.07755102 1.10000000

> y3 = 212.7 * x / (0.06412 + x)

> points(x,y3,type="l")

Analysis with the quadratic model

We only show how to fit the model. The residual plot is made as usual (this is multiple linear regres-
sion model so we use the standardized residuals), and the plot with observed and expected points is
constructed as above. Recall that this model was just for illustation; the mean structure is clearly mis-
specified.

> conc2 = conc*conc

> model2 = lm(reaction ~ conc + conc2)

3.2.2 SAS-programs and output

Example 3.1 (continued)

Reading the data into SAS and construction of scatter plot

The data is read into SAS, and the scatter plot of reaction time against concentration is created.

data puromycin;

input conc @@;

do rep=1,2;
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input reaction @@; output;

end;

cards;

0.02 76 47

0.06 97 107

0.11 123 139

0.22 159 152

0.56 191 201

1.10 207 200

;

run;

proc gplot data=puromycin;

plot reaction*conc=1;

run;

Analysis of the reciprocal data

The reciprocal variables are defined as rereac and reconc. The simple linear regression of the reciprocal
reaction time on the reciprocal concentration is fitted, and the corresponding residual plot is made.
Finally, we test for identical variances with Bartlett’s test. For this, the concentration should be thought
of as a qualitative variable so it is included in a class-statement.

data puromycin2;

set puromycin;

rereac=1/reaction;

reconc=1/conc;

run;

proc gplot data=puromycin2;

plot rereac*reconc=1;

run;

proc glm data = puromycin2;

model rereac = reconc;

output out = reout predicted = p student = stdres;

run;

proc gplot data = reout;

plot stdres * p;

run;

proc glm data=puromycin2;

class reconc;

model rereac=reconc / ss3;

means reconc / hovtest=bartlett;

run;

The output from the final call to proc glm includes this (and all the usual stuff):

The GLM Procedure

Bartlett’s Test for Homogeneity of rereac Variance
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Source DF Chi-Square Pr > ChiSq

reconc 5 13.8957 0.0163

Analysis with the non-linear model

Before fitting the non-linear model we check for identical variances on the original scale:

proc glm data=puromycin;

class conc;

model reaction=conc / ss3;

means conc / hovtest=bartlett;

run;

with output like this (and a lot other stuff):

The GLM Procedure

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 5 30161.41667 6032.28333 51.89 <.0001

Error 6 697.50000 116.25000

Corrected Total 11 30858.91667

Bartlett’s Test for Homogeneity of reaction Variance

Source DF Chi-Square Pr > ChiSq

Conc 5 2.4621 0.7822

Then, to the non-linear analysis with proc nlin. proc nlin of course need to know the particular
non-linear model we have in mind. This is done in the model-statement where the expression for the
response as a function of the explanatory variable(s) and the parameters is specified. Furthermore some
initial values must be specified.

proc nlin data=puromycin;

parms a=200 b=0.1;

model reaction=a*conc/(b+conc);

output out = nlinout predicted = p residual = res;

run;

proc gplot data=nlinout;

plot res * p;

run;

The output looks as follows:

The NLIN Procedure

Dependent Variable reaction

Method: Gauss-Newton

Iterative Phase

Sum of

Iter a b Squares
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0 200.0 0.1000 7964.2

1 212.0 0.0543 1593.2

2 211.8 0.0623 1201.0

3 212.6 0.0639 1195.5

4 212.7 0.0641 1195.4

5 212.7 0.0641 1195.4

6 212.7 0.0641 1195.4

NOTE: Convergence criterion met.

NOTE: An intercept was not specified for this model.

The NLIN Procedure

Sum of Mean Approx

Source DF Squares Square F Value Pr > F

Model 2 270214 135107 1130.18 <.0001

Error 10 1195.4 119.5

Uncorrected Total 12 271409

Approx

Parameter Estimate Std Error Approximate 95% Confidence Limits

a 212.7 6.9471 197.2 228.2

b 0.0641 0.00828 0.0457 0.0826

Approximate Correlation Matrix

a b

a 1.0000000 0.7650835

b 0.7650835 1.0000000

First, SAS summarizes the iterations it has been through in order to get a fit of the model. The message
“Convergence criteria met” is very important. If SAS gives another message there has been problems in
the optimization and SAS is not so sure that the results are correct. We cannot trust the results from such
an analysis, but could try with other (better) starting values.

Further down in the output we find the variance estimate, s2 = 119.5 and the parameter estimates from
the non-linear structure. Also reported is the correlation matrix of the parameter estimates.

Note that all the ingredients for the F-test can be found in the above output from proc glm and proc

nlin.

Instead of specifying the starting values, one may let SAS look for some numerically, but we have to tell
SAS roughly where to look. Here is program where SAS looks for such starting values in a grid:

proc nlin data=puromycin method=dud;

parms a=200 to 220 by 5 b=0.05 to 0.8 by 0.1;

model reaction=(a*conc)/(b+conc);

output out=par parms=a b;

run;

SAS finds the same parameter estimates as before (luckily enough), so we do not show the output.

In the above calls to proc nlin SAS makes numerical computations of the derivatives during the opti-
mization. It is also possible to specify the derivatives directly, which makes the work easier for SAS, but
it is usually not worthwhile with today’s computers.
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Plot of observations and predicted valued

Let us show how to make the plot of data points together with the graph for the fitted non-linear function
(similar to Figure 3.3).

First pairs of fictious concentration values and the corresponding estimated reaction time values are
constructed and saved in the dataset fit. In total 300 pairs are computed. Then the two datasets,
puromycin and fit are merged because we want to plot variables from both in the same plot. Then the
data points and the (c,v)-values are plotted in the same plot. This is obtained by overlay. Note that the
data points are points whereas the (x,y)-values are joined to a curve; this is obtained with symbol1 and
symbol2.

data fit;

do x=0 to 300;

c = 0.02 + x*(1.10 - 0.02)/300;

v = 212.684*c/(0.064121+c);

output;

end;

run;

data fit; merge puromycin fit ; run;

symbol1 i=none v=dot c=black;

symbol2 i=join v=none c=black l=1;

proc gplot data=fit;

plot reaction*conc=1 v*c=2 / overlay;

run;

Analysis with the quadratic model

Finally, the quadratic model. Here we just show how the model is fitted. The residual plot is made
as usual, and the plot with observed points and the fitted parabola is constructed as the similar plot
for the non-linear model. Recall that this model was just for illustation; the mean structure is clearly
misspecified.

data puromycin;

set puromycin;

concsq = conc*conc;

run;

proc glm data = puromycin;

model reaction = conc concsq;

output out=quadout predicted=p student=stdres;

run;
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Gaussian models with random effects

So far, the Gaussian (normal) models we have considered have included only fixed (or systematic) ef-
fects, apart from the residual. That is, all explanatory variables have been used for description of the
mean structure (E yi, i = 1, . . . , n). In this chapter we will discuss models with both fixed and em random
effects, that is, models with multiple sources of variation. Some of the explanatory variables are used to
describe the random variation. Gaussian models with random effects and a fixed part that is linear are
called mixed linear models. We first give some general comments and recommendataions and then move
on with the analysis of two datasets.

4.1 Some general considerations

4.1.1 Fixed effects and random effects

When we set up a mixed linear model we have to decide which explanatory variables to include in the
model. Moreover, we must decide if the factors (qualititative explanatory variables) should be fixed or
random.

The fixed factors are the factors which we believe describe the response variable in a systematic way.
Typical examples are treatment, time, variety, dose, sex, breed (although factors like variety and breed
may also occur as random effects depending on the design and the purpose of the experiment). Usually
the experiment has been carried out in order to investigate the effects of some of these factors, whereas
others are included in the analysis in order to adjust for their effects (this is often the case for sex, for
example).

The fixed, or systematic, effects describe the mean structure of the model. That is, they are used to
describe E yi, i = 1, . . . , n, just as in the linear models with no random effects. Note that also covariates
(such as time, dose or baseline measurements) may be used in the fixed part of the model.

A factor is used as a random factor if its levels can be thought of as being randomly selected from a
population of possible levels. Typical examples of random factors are person, animal, block, litter, herd,
and field. We are not interested in properties for the specific persons/animals/fields in the experiment
but rather in the population properties.

The random effects describe the variance structure of the observations. Each random effect contributes
to the variance with a term, so the variance of each yi is a sum σ2 + σ2

1 + . . . + σ2
m where σ2 is the residual

variance and σ2
j is the variance due to the j’th random factor. Note that all observations have the same

49
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variance. In the linear normal models (with no random effects) all observations are assumed to be
independent. This is not true in models with random effects. Observations on different levels of (all)
random factor(s) are independent but observations on same the level of a random factor are correlated. Loosely
speaking, observations with the same level of a random factor are “more alike” than observations with
different levels.

Example 4.1 (A split-plot experiment) As an example, consider a field experiment with eight plots,
called whole plots. Four of them (randomly selected among the eight) are treated with some fertil-
izer, four of them are not. Moreover, each plot is divided into two subplots; one of them is sown with
one variety, the other subplot with another. At the end of the season the yield of each subplot is mea-
sured. This is a so-called split-plot experiment. The experimenter is interested in the effect of fertilizer
and variety on yield. In this case, fertilizer and variety (and their interaction) are obviously fixed effects.
There is no interest in the particular eight whole plots, so whole plot should be random. In other words:
the yield on two subplots from the same whole plot are assumed to be correlated (“more alike”), which
seems quite reasonable. �

In some cases the decision to use a certain factor as random rather than systematic is absolutely essential
for the analysis, and only the random effects analysis is correct. This is true for the example above: since
both subplots on a whole plot are either fertilized or not, the effect of fertilizer should be compared to
the variation between whole plots. In other cases the tests are the same no matter whether a factor is
used as systematic or random, and the difference is mainly a question of interpretation of the results:
do the conclusions apply to the particular factor levels from the experiment or do they apply to a whole
population of possible factor levels? The beech wood example below is an example of this situation.

4.1.2 Factor diagrams and mixed linear models

In order to decide on a statistical model we have to understand the structure of the data. For complex
experimental designs with many factors a factor diagram is often a good help throughout the analysis.
For mixed linear models in “nice” (balanced in a certain sense) designs the factor diagram moreover
tells how to perform the tests for model reduction and tell how to compute degrees of freedom for each
factor.

First, write up the relevant factors from the experiment, including relevant interactions. Second, identify
the ordering of the factors; which factors are coarser/finer than others? Recall that a factor fac1 is coarser
than another fac2 if knowing the level of fac2 implies that you also know the level of fac1. Third, make
a diagram with all the factors and put an arrow from fac2 to fac1 if fac1 is coarser than fac2. Put the
finer factors to the left and the coarser factors to the right. Draw also the identity factor, I (to the very
left), and the trivial factor, 0 (to the very right) in the diagram. All factors are coarser than I and finer
than 0. Fourth, decide whether the factors should be fixed or random, and put brackets, [ ], around the
random factors, also around I.

A factor diagram corresponds to a mixed linear model, namely the model with the factors without
brackets as fixed effects and the factors in brackets as random effects. Note that covariates do not belong
in a factor diagram, but that mixed linear models may very well include covariates.

In a model with random effects some of the F-tests from the usual ANOVA should be modified — in
nice cases by using the mean square error (MSE) for another random factor than I in the denominator.
The factor diagram shows which random factor the fixed effects should be tested against. A fixed effect
should be tested against the coarsest random factor that is finer than the systematic factor in question. In the
nice cases, the degreess of freedom may also be computed from the factor diagram. We will not go into
details about that, however, since SAS or R will compute the degrees of freedom automatically.
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Figure 4.1: Factor diagram for the split-plot experiment.

Even in unbalanced cases where the above rules do not apply it is often useful to draw the factor diagram
in order to get an overview of the experimental design. Let us consider three nice cases:

Example 4.1 (continued) The factor diagram for the split-plot experiment is drawn in Figure 4.1. The
degrees of freedom are added. We see that the interaction should be tested against the residual. If the
interaction is not significant, then the effect of fertilizer should be tested against whole plot, and the
effect of variety against the residual. �

Example 4.2 (Humidity of beech wood) In order to investigate the effect on humidity of drying of beech
wood the following experiment was carried out. Each of 20 planks was dried in a certain period of time.
Then the humidity percentage was measured in five depths and three widths for each plank. The points
of measurements are described in Figure 4.2. There are 15 meaurements for each plank and 300 obser-
vations in total, summarized in Table 4.1. The interest is in the variation of humidity across beech wood
planks in general whereas one is not interested in the specific planks from the experiment.

There are three factors in this experiment: planks with 20 levels corresponding to the 20 planks. width
with three levels and depth with five levels. It is natural to include the interaction between width and
depth, width× depth. The interaction factor has 15 levels, corresponding to the grid in Figure 4.2. The
factors width, depth and their interaction are obviously fixed. It is natual to consider plank as random
as the interest lies in variation of humidity across planks in general. The 20 planks are randomly chosen
from a large population of planks and the results from the analysis with plank as random will apply to
the populatation of planks.

In the following let yi be the humidity percentage for the i’th measurement, while planki is the plank
number, widthi is the width and depthi is the depth. Then the above model is given by

yi = µ + α(widthi) + β(depthi) + γ(widthi, depthi) + d(planki) + εi, i = 1, . . . , 300, (4.1)

where d(j) ∼ N(0, σ2
plank), εi ∼ N(0, σ2) and all d(j)’s and εi’s are independent. Figure 4.3 shows the

corresponding factor diagram. We see that all fixed effects should be tested against the residual. This
is not surprising since all “treatments” (combinations of widths and depths) are present in all “blocks”
(planks).

Note the variance structure in the above model: the variance of all yi’s is σ2
plank + σ2; observations from

different planks are independent whereas two observations from the same plank are correlated with
correlations σ2

plank/(σ2
plank + σ2). �
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Figure 4.2: The beech wood experiment.
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Figure 4.3: Factor diagram for the beech wood data.

Example 4.3 (Redness of pork meat) In order to compare the colour of meat from two breeds of pigs
and for two light levels while storing, the following experiment was carried out: 20 pigs, 10 from an
old breed not used commercially anymore and 10 from another breed, were slaughtered. Two pieces of
meet from each pig were stored, one piece in dark and one piece in light. After six days, the “redness”
of the meat was measured. The data is listed in Table 4.2. Large values of colour correspond to very red
meat wheras low values correspond to less red meat.

There are three factors, pigno with 20 levels, storage and breed with two levels. It is natural to include
the interaction factor storage× breed as well. Note that breed is coarser than pigno. We will use
storage, and breed and storage× breed as fixed and pigno as random.

For the i’th observation, let yi be the colour measurement and breedi, storagei and pignoi be the levels
of the explanatory factors. Then the model is the following:

yi = µ + α(storagei) + β(breedi) + γ(storagei, breedi) + d(pignoi) + εi, i = 1, . . . , 300, (4.2)

where εi ∼ N(0, σ2), d(j) ∼ N(0, σ2
pigno) and all εi’s and d(j)’s are independent.
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Width 1 2 3
Plank / Depth 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

1 3.4 4.9 5.0 4.9 4.0 4.1 4.7 5.2 4.6 4.3 4.4 4.8 5.0 4.9 4.2
2 4.3 5.5 6.2 5.4 4.7 3.9 5.6 5.7 5.5 4.9 4.0 4.7 4.5 3.9 4.0

3 4.2 5.5 5.6 6.3 4.5 5.4 6.2 6.1 6.4 5.2 4.5 4.9 4.9 4.9 4.4

4 4.4 6.0 7.1 6.9 4.6 4.6 6.1 6.6 6.5 4.7 4.9 5.9 5.8 6.4 4.7
5 3.9 4.7 5.2 5.0 3.7 4.2 5.2 5.4 4.8 3.9 4.0 4.4 4.4 4.1 3.5

6 4.6 5.9 6.3 5.8 4.8 5.9 7.3 6.9 6.9 4.4 5.2 5.7 6.6 6.0 4.0

7 3.9 5.6 6.0 5.3 5.0 4.9 6.9 7.1 6.1 4.5 4.3 5.4 5.9 5.5 4.2
8 3.9 4.5 5.3 5.6 4.7 3.7 4.9 4.8 4.9 4.3 3.8 4.5 5.4 4.8 4.0

9 3.6 4.1 4.0 4.4 3.7 3.8 5.1 5.0 4.6 3.3 3.0 3.9 4.7 4.9 3.8

10 6.5 8.7 9.5 7.9 6.6 6.9 8.9 7.4 7.0 6.9 5.8 7.5 7.7 7.3 5.9
11 3.7 5.2 5.5 5.9 4.4 4.7 5.8 5.7 4.9 4.2 3.7 5.0 6.3 5.2 4.3

12 4.3 5.8 6.2 5.2 4.4 4.8 6.7 7.0 6.1 5.2 5.1 5.7 5.9 6.4 5.1

13 6.5 8.8 9.1 8.9 6.0 5.9 7.5 8.4 7.9 5.7 4.0 4.2 4.9 4.6 3.5
14 4.4 6.2 6.7 6.4 4.3 5.7 7.0 7.4 7.3 5.5 4.6 6.2 6.8 5.8 4.9

15 5.5 7.1 7.5 6.9 5.4 6.4 8.4 8.9 8.1 6.1 6.5 8.4 9.1 9.2 7.5
16 5.2 6.0 6.2 6.6 5.3 6.6 7.6 7.8 7.7 5.8 5.9 6.7 6.7 5.0 3.9

17 3.7 4.5 5.0 4.5 3.7 3.7 4.4 4.8 4.4 4.3 3.7 4.5 4.7 5.3 3.9

18 6.0 7.4 7.8 7.5 5.7 6.9 8.6 8.8 7.5 5.4 5.1 6.1 5.2 5.4 4.7
19 3.8 4.6 4.8 4.4 3.8 3.7 4.7 4.7 4.3 3.7 3.3 3.5 3.7 3.4 3.2

20 6.1 7.4 7.7 6.7 4.6 4.7 6.3 7.1 6.5 5.1 4.7 6.0 6.0 6.3 4.2

Table 4.1: The beech wood data.

pigno storage breed colour pigno storage breed colour
13 light old 5.5630 251 light new 3.3360
13 dark old 9.5280 251 dark new 6.0190
41 light old 5.5730 252 light new 4.4060
41 dark old 4.9450 252 dark new 7.2740
55 light old 3.4870 256 light new 3.4580
55 dark old 7.5490 256 dark new 4.0540
66 light old 4.0410 264 light new 4.0320
66 dark old 6.4500 264 dark new 6.4510
74 light old 4.3130 277 light new 2.3770
74 dark old 6.8880 277 dark new 6.3430
84 light old 5.2320 280 light new 2.0220
84 dark old 5.0420 280 dark new 4.8940

129 light old 5.1560 283 light new 5.3420
129 dark old 7.1570 283 dark new 2.0790
138 light old 2.9290 284 light new 2.6660
138 dark old 7.3460 284 dark new 1.6060
181 light old 4.1400 285 light new 4.9530
181 dark old 7.5740 285 dark new 7.4610
190 light old 5.3910 286 light new 5.4800
190 dark old 4.9710 286 dark new 6.3960

Table 4.2: The pork meat data.
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Figure 4.4: Factor diagram for the pork meat data.

The corresponding factor diagram is drawn in Figure 4.4. We see that the effect of breed should be
tested against pigno, which is correct. Had we used pigno as a fixed effect we could not have tested for
a breed effect if there was a significant difference between pigs (a significant effect of pigno).

Note that we can think of model (4.7) as a split-plot model (see Example 4.1) with pigno as the whole plot
factor. There is a difference, though, since the levels of breed are not randomly allocated to the different
pigs, but this does not matter for the analysis. Rather we like to think of the model as a model with
random intercepts: d equal to zero corresponds to an average pig. This population average is displaced
randomly for each pig, with d(pignoi) for pig number i. This random displacement follows the pig at all
observations: the meat of the pig may be more red than average no matter the storage (d(pignoi) > 0),
or less red than average no matter the storage (d(pignoi) > 0).

4.1.3 Model reduction: approximate methods and the likelihood ratio test

As already mentioned, hypothesis tests can be carried out by F-tests if the design is balanced in a certain
sense. In these cases one may use the mean square errors (MSE’s) from the corresponding linear model,
that is, the model where the random factors are fixed instead. The factor diagram shows which MSE
should appear in the denominator as well as the degrees of freedom for the F-test.

Many experiments are not balanced, though, due to the design itself or due to missing values. The
factor diagram may still help to get an overview of the design, but approximate methods are needed for
hypothesis testing and confidence intervals. Both SAS and R can make such approximations, so we can
analyze data from unbalanced designs, too.

There is a lot of debate among experts about what approximations to use. In particular SAS and R do
not support quite the same approximations. proc mixed in SAS makes approximate F-tests, where the
degrees of freedom are computed by various methods which the user may choose. We generally rec-
ommend to use Satterthwaite’s approximation, see the details in Section 4.2.2. Not all statisticians agree
that these tests are valid, and they are not implemented in R. In R we will instead carry out likelihood
ratio (LR) tests.

The rationale for the LR test is the following: For a given model, the maximum of the likelihood function
measures (in a certain sense) how well the model fits the data. Hence, if we compare the maximum of
the likelihood function under a given model with the maximum of the likelihood function under a null
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model (assuming a hypothesis to be true), we have a measure of the discrepancy of the models. In other
words we measure how much worse the null model fits the data compared to the full model.

To be precise, we use

LR = 2 · log L(full model) − 2 · log L(null model).

This statistic is approximately χ2-distributed; the degrees of freedom is equal to the decrement in model
dimensions (number of model parameters) from the full model to the null model. However, the expe-
rience is that these approximate p-values tend to be too small, thereby sometimes overestimating the
importance of certain effects. Experts therefore recommend to compute a better approximation to the
p-value by so-called parametric bootstrap if the approximate p-value is below the significance level, but
not very small. This is quite easy to do in R, see two examples in Section 4.2.1 and 4.3.1. Likelihood ratio
tests are also easily carried out in SAS, but bootstrap p-values are not so easily carried out.

The examples in this chapter are all of the nice kind, where we could use exact F-tests. We will use the
general methods, anyway, in order to show what to do in the general case.

Finally, some comments on estimation method. In order to make likelihood ratio tests (for fixed effects)
it is essestial that the models are fitted with ML (maximum likelihood). However, it is well-known
that REML (Restricted Maximum Likehood) estimation generally produced better estimates. Hence, we
recommend to always fit the final model with REML rather than ML; also if model reduction has been
carried out by likelihood ratio test using ML. Note that both R and SAS use REML as default.

4.1.4 Model validation

It is not so obvious how to carry out model validation in mixed linear models. We recommend to do it
in the corresponding linear model, that is, the model where the random factors are moved to the fixed
part of the model. In other words, the procedure is as follows: first fit the linear model (with lm or proc
glm) which as fixed effects include the fixed effects as well as the random effects from the mixed linear
model we wish to validate. Make a residual plot and possibly a QQ-plot for this model in the usual way.
Note that we are not interested in the linear model in itself, but only consider it for model validation
purposes.

4.2 Analysis of the beech wood data

Example 4.2 (continued) Let us continue with the beech wood data. In order to get an idea about the
dependence of width and depth on humidity, we make some profile plots, see Figure 4.5. In the top
left plot the depth-humidity pattern is illustrated by plotting the average humidity (over width) for
each plank against width. In the top right plot, the pattern for width is illustrated similarly. We see
an extensive plank-to-plank variation. Moreover there is a clear relation between humidity and depth:
the humidity is high in the center of the planks and low at the sides. The message about width is less
clear. We have also plotted the 15 averages of humidity (over de 20 planks) against width and depth
(the bottom plots). Graphically, there are no indications of an interaction between width and depth. We
test the hypothesis formally below.

Recall model (4.1) with width, depth and the interaction width× depth as systematic factors and plank
as random:

yi = µ + α(widthi) + β(depthi) + γ(widthi, depthi) + d(planki) + εi, i = 1, . . . , 300, (4.3)

We first validate the model by investigating the standardized residuals from the corresponding linear
model, that is, the model where plank is fixed rather than random. The standardized residuals are
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Figure 4.5: Humidity of beech wood: profile plots.

plotted against the predicted values in Figure 4.7. We see a clear pattern: variances tend to be larger for
large predicted values than for small predicted values, so we do not believe in variance homogeneity.

Let us try if a logarithm transformation can fix the problem. We use y = log(humid) as response variable
instead of humid. Figure 4.7 shows the residual plot to the left and the QQ-plot for the standardized
residuals. Neither makes us nervous about the appopriateness of the model.

Now to the actual analysis of model (4.3). First we fit the model and test if the interaction between width
and depth is signficant, that is, if the model can be reduced to

yi = µ + α(widthi) + β(depthi) + d(planki) + εi, i = 1, . . . , 300, (4.4)

It turns out that the interaction is not significant (p ≈ 0.45, depending on the test method). This is
completely in line with the bottom figures of Figure 4.5. Hence, we accept model (4.4). Both main effects
are highly significant (p < 0.001), so there is a variation in humidity across the planks in both directions.

Take a look at the left plots of Figure 4.5 again. They indicate that the humidity is symmetric around
the center (depth = 5). Let us make a formal test for this hypothesis. Let dist be a factor that partions
the observations into three groups: observations in the center (depth = 5), observations from the side
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Figure 4.6: Humidity of beech wood: residual plot for the raw data.
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Figure 4.7: Humidity of beech wood: residual plot and QQ-plot for the log-transformed data.

(depth = 1 and depth = 9) and observations in between (depth = 3 and depth = 7). We can define it as

disti = |depthi − 5|
with values 0, 2 and 4. The hypothesis of symmetry then corresponds to the model reduction from (4.5)
to

yi = µ + α(widthi) + φ(disti) + d(planki) + εi, i = 1, . . . , 300, (4.5)

The hypothesis is accepted with a p-value of 0.89. Hence, there is symmetry around the center.

The variance estimates (REML) in the final model are

σ̂2
plank = 0.0313; σ̂2 = 0.011

We finish with the adjusted means, also called least squares (LS) means, for the main effects of width
and distfac.

For width equal to 1, say, we get (with approximate 95% confidence limits in parenthesis)

µ̂ + α̂(1) + ¯̂φ = 1.70 (1.62, 1.78)
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where we average over the three levels of dist. For dist equal to 0, say, we get

µ̂ + ¯̂α + φ̂(0) = 1.80 (1.72, 1.88)

where we average over the three levels of width. Similarly for the other levels of width and depth. We
give them on the original scale (taking exponentials of both estimates and confidence limits):

Factor Adj. mean Adj. mean Adj. mean
width 1: 5.48 (5.05, 5.94) 2: 5.75 (5.30, 6.24) 3: 5.07 (4.68, 5.50)
dist 0: 6.05 (5.57, 6.58) 2: 5.75 (5.30, 6.23) 4: 4.59 (4.24, 4.98)

In particular we find the expected pattern for distfac: the humidity decreases from the center and out.
In the width-direction the pattern is less clear.

4.2.1 R programs and output

Mixed linear models can be analyzed with the lme-function from the nlme-package or with the lmer-
function from the lme4-package. The packages must be loaded before we can use the functions, see
below.

If there are non-nested random effects, then the specification of the random effects is much easier with
lmer than with lme. However, lmer does not (yet) have all the “facilities” that lme does so will mainly
use lme. In a few cases we also show how to use lmer. Note that lmer is more general than lme and can
also be used for generalized linear models with random effects, for example logistic regression models
with random effect, see *** Chapter ??. ***

Some general comments on installation and loading of packages before we start the data analysis: There
are a large number of additional R-packages available which are not automatically installed with the
base package. nlme and lmer are two such packages. A package is a collection of R-functions. To access
the functions from a package, the package should once and for all be installed on your local computer.
On a computer with internet connection, clicking “Packages” in the R menu will give you the option
“Install package(s) from CRAN”, and first list a number of countries (choose “Denmark”) and then
list the possible packages. Click the wanted package and it is installed! This only needs to be carried
out once on your computer. To actually use the functions from the add-on package (and for the help
information to be visible) the package must also be loaded, either via the “Packages” menu or by the
following library-command. You need to do this every time R is re-started. Actually, nlme is in the
standard package so it should only be loaded (not installed). The lme4-package should be installed, too.

Example 4.2 (continued) We now show how to analyse the beech wood data with R.

Reading the data into R

Suppose that the data are available in the file plank.txt as follows:

plank width depth humid

1 1 1 3.4

1 1 3 4.9

. . . . [more datalines here]

. . . .

20 3 9 4.2
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Then, the dataset is read into R the explanatory variables are made factors and a variable with the
logarithmic humidity values is constructed:

> plankdata = read.table("plank.txt",header=T)

> attach(plankdata)

> loghumid = log(humid)

> w = factor(width)

> d = factor(depth)

> p = factor(plank)

The profile plots

The profiles for each plank (the upper plots in Figure 4.5) are most easily constructed with interaction.plot.
Note however, that the figures are only reasonable because the values of depth and width are equidis-
tant. For the average plot in the bottom we need to construct the averages ourselves.

> interaction.plot(w,p,humid)

> interaction.plot(d,p,humid)

> meanhum = rep(0,15)

> w1 = rep(0,15)

> d1 = rep(0,15)

> for (i in 1:3) for (j in 1:5)

{

no = 5*(i-1)+j

w1[no] = i

dep = d[j]

d1[no] = dep

meanhum[no] = mean(humid[w==i & d==dep])

}

> interaction.plot(w1,d1,meanhum)

> interaction.plot(d1,w1,meanhum)

Model validation

Model validation is carried out in the corresponding linear model with lm:

> library(MASS)

> model1 = lm(humid ~ w*d + p)

> plot(predict(model1),stdres(model1))

> model2 = lm(loghumid ~ w*d + p)

> plot(predict(model2),stdres(model2))

> qqnorm(stdres(model2))
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Analysis of mixed linear model with lme

Since the design is balanced we could carry out exact F-tests (see below on how to so with aov). We will,
however, use the (approximate) methods that are applicable for non-balanced designs as well.

First nlme is loaded so we can use lme. Second, we fit models (4.3) and (4.4) with lme. The fixed effect
part of a model is written in the usual lm-way. The random part is specified by a one-sided expression
followed by some grouping variables after the |. Here, we have only one grouping variable, plank. Since
we want to use ML estimation (rather than REML which is default), we use the option method="ML".
anova gives us a test for the reduction from model3 to model4.

> library(nlme)

> model3 = lme(loghumid ~ w+d+w:d, random = ~1|p, method="ML")

> model4 = lme(loghumid ~ w+d, random = ~1|p, method="ML")

> anova(model4,model3)

Model df AIC BIC logLik Test L.Ratio p-value

model4 1 9 -407.7940 -374.4599 212.8970

model3 2 17 -399.9446 -336.9803 216.9723 1 vs 2 8.150664 0.4189

We get LR = 8.15 and an approximate p-value computed from the χ2(8)-distribution of 0.42 (8 = 17− 9).
In this case there is no doubt that the correct p-value is above 5%, so there is no need to do bootstapping.
We will do it anyway, however, just to show the method:

First, simulate.lme is used to to simulate 1000 datasets from the null model, using the estimates from
the real dataset. In our case the null model corresponds to model4. For each simulated dataset, the null
as well as the alternative model, here given by model3 are fitted. R saved the maximum values of the
log-likelihood function for each simulated dataset in a list. This takes a few minutes. We plug out the
relevant values, compute the LR test statistic in lrsim and finally compute the frequency of simulated
LR-values that are larger than our observed value, 8.151. In this case out bootstrap p-value is 0.436.

> sim = simulate.lme(model4, m2=model3, nsim=1000, method="ML")

> lrsim = 2*(sim$alt$ML - sim$null$ML)

> psim = sum(lrsim > 8.151)/1000

> psim

[1] 0.436

Next, we test for the main effects. We fit the models with no depth effect and no width effect, respec-
tively, and use anova:

> model5 = lme(loghumid ~ w, random = ~1|p, method="ML")

> anova(model5,model4)

Model df AIC BIC logLik Test L.Ratio p-value

model5 1 5 -172.4461 -153.9272 91.22304

model4 2 9 -407.7940 -374.4599 212.89698 1 vs 2 243.3479 <.0001

> model6 = lme(loghumid ~ d, random = ~1|p, method="ML")

> anova(model6,model4)

Model df AIC BIC logLik Test L.Ratio p-value

model6 1 7 -347.5627 -321.6362 180.7813

model4 2 9 -407.7940 -374.4599 212.8970 1 vs 2 64.23127 <.0001

We see that both main effects are highly significant (no need for bootstrapping).

Now, to the test of symmetry around the center. The factor distfac is constructed, as a factor with level
0, 2, 4. We fit the model (4.5) and test it against model (4.4):
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> dist = abs(depth-5)

> distfac = factor(dist)

> model7 = lme(loghumid ~ w+distfac, random = ~1|p, method="ML")

> anova(model7,model4)

Model df AIC BIC logLik Test L.Ratio p-value

model7 1 7 -411.5675 -385.6410 212.7838

model4 2 9 -407.7940 -374.4599 212.8970 1 vs 2 0.2264393 0.893

Estimation, adjusted means, etc.

We fit the final model with REML. The estimates are found with summary and VarCorr:

> model7a = lme(loghumid ~ w+distfac, random = ~1|p, method="REML")

> summary(model7a)

Linear mixed-effects model fit by REML

Fixed effects: loghumid ~ w + distfac

Value Std.Error DF t-value p-value

(Intercept) 1.8093497 0.04272041 276 42.35328 0.0000

w2 0.0489567 0.01498030 276 3.26807 0.0012

w3 -0.0763691 0.01498030 276 -5.09797 0.0000

distfac2 -0.0517808 0.01674849 276 -3.09167 0.0022

distfac4 -0.2753288 0.01674849 276 -16.43903 0.0000

> VarCorr(model7a)

p = pdLogChol(1)

Variance StdDev

(Intercept) 0.03126445 0.1768176

Residual 0.01122047 0.1059267

The adjusted means for width and distfac are obtained by the function estimable from the gmodels-
package. Recall that the package should be installed and loaded before we can use estimable. estimable
enables us to estimate linear combinations of the parameters. We must specify the particular linear com-
binations we are interested in. For example, we write

µ̂ + α̂(1) + ¯̂φ = 1 · µ̂ + 1 · α̂(1) + 0 · α̂(2) + 0 · α̂(3) +
1

3
· φ̂(0) +

1

3
· φ̂(2) +

1

3
· φ̂(4). (4.6)

From the summary-output above we see that α(1) and and φ(0) have been set to zero by R. Hence, (4.6)
is equal to

1 · µ̂ + 0 · α̂(2) + 0 · α̂(3) +
1

3
· φ̂(2) +

1

3
· φ̂(4).

so the relevant coefficients are (1,0,0,1/3,1/3). Similarly for the other linear combinations.

We get estimates, standard errors as follows. Recall that these are on the logarithmic scale, so they
should be exponentiated in order to be on the original scale.

> library(gmodels)

> ls.w1 = c(1,0,0,1/3,1/3)

> ls.w2 = c(1,1,0,1/3,1/3)

> ls.w3 = c(1,0,1,1/3,1/3)
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> ls.d0 = c(1,1/3,1/3,0,0)

> ls.d2 = c(1,1/3,1/3,1,0)

> ls.d4 = c(1,1/3,1/3,0,1)

> lsmeans = rbind(ls.w1,ls.w2,ls.w3,ls.d0,ls.d2,ls.d4)

> y = estimable(model7a, lsmeans, conf.int=0.95)

> y

Estimate Std. Error t value DF Pr(>|t|) Lower.CI Upper.CI

ls.w1 1.700313 0.04098271 41.48854 92 0 1.618918 1.781708

ls.w2 1.749270 0.04098271 42.68311 92 0 1.667875 1.830665

ls.w3 1.623944 0.04098271 39.62510 92 0 1.542549 1.705339

ls.d0 1.800212 0.04183575 43.03047 92 0 1.717123 1.883302

ls.d2 1.748431 0.04070290 42.95594 92 0 1.667592 1.829271

ls.d4 1.524883 0.04070290 37.46375 92 0 1.444044 1.605723

> exp(y)

Estimate Std. Error t value DF Pr(>|t|) Lower.CI Upper.CI

ls.w1 5.475662 1.041834 1.042907e+18 9.017628e+39 1 5.047625 5.939995

ls.w2 5.750402 1.041834 3.443818e+18 9.017628e+39 1 5.300889 6.238034

ls.w3 5.073059 1.041834 1.617933e+17 9.017628e+39 1 4.676495 5.503252

ls.d0 6.050931 1.042723 4.874119e+18 9.017628e+39 1 5.568484 6.575178

ls.d2 5.745583 1.041543 4.524042e+18 9.017628e+39 1 5.299391 6.229343

ls.d4 4.594608 1.041543 1.863372e+16 9.017628e+39 1 4.237798 4.981459

Recall that only the estimates and the confidence limits make sense on the exponential scale (the exp(y)-
object). In particular the standard errors do not! R also comes with a warning message which has to do
with the computation of the degrees of freedom: the tests and confidence intervals are only approximate.

Analysis with lmer

We could have fitted the models with lmer instead of lme. For example:

> library(lme4)

> model3a = lmer(loghumid ~ w+d+w:d + (1|p), method="ML")

> model4a = lmer(loghumid ~ w+d + (1|p), method="ML")

> anova(model4a,model3a)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

model4a 9 -407.79 -374.46 212.90

model3a 17 -399.94 -336.98 216.97 8.1507 8 0.4189

Analysis with aov

Finally, we show how the exact test for interaction can be carried out with aov. Recall that this test is
only valid when the design is balanced.

> model8 = aov(loghumid ~ w*d + Error(p))

> summary(model8)

Error: p

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 19 9.1236 0.4802
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Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

w 2 0.7979 0.3989 35.3059 2.518e-14 ***

d 4 4.2849 1.0712 94.8067 < 2.2e-16 ***

w:d 8 0.0888 0.0111 0.9821 0.4503

Residuals 266 3.0056 0.0113

Since the interaction is not significant, the model without interaction should then be fitted, and tests for
the main effects should be carried out.

4.2.2 SAS programs and output

Mixed linear models can be analyzed with proc mixed in sas. The call to proc mixed is quite similar to
that of proc glm: The qualitative variables (factors) should appear in the class statement in order for
SAS to know that they are indeed qualitative. The fixed part is specified as for proc glm whereas the
random factor(s) are specified in the random-statement.

As default, SAS used the REML-method for estimation. We generally recommend to write nobound, al-
lowing for negative variance components, and to include the option ddfm=satterth in model statement.
This tells SAS to use a particular method for computation of degrees of freedom in non-balanced cases.
If you prefer to make likelihood ratio tests, this is possible too. See below for a short explanation.

Example 4.2 (continued) We now show how to analyse the beech wood data with SAS.

Reading the data into SAS

Suppose that the data are available in the file plank.txt as follows:

plank width depth humid

1 1 1 3.4

1 1 3 4.9

. . . . [more datalines here]

. . . .

20 3 9 4.2

Then, the dataset is read into SAS with the following program lines:

data planks;

infile ’c:\plank.txt’ firstobs=2;

input plank width depth humid;

proc print;

run;

Model validation

Model validation is carried out in the corresponding linear model, that is, the model where plank is
used as a fixed effect. Hence, we use proc glm. First, the variable humid is used as response, next the
logarithmic humidity is computed and used as response.
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proc glm data = planks;

class plank width depth;

model humid = width*depth plank;

output out=out1 predicted = pred1 student=sres1;

run;

symbol1 i=none v=dot c=black;

proc gplot data = out1;

plot sres1*pred1;

run;

data planks;

set planks;

loghumid = log(humid);

run;

proc glm data = planks;

class plank width depth;

model loghumid = width*depth plank;

output out=out2 predicted = pred2 student=sres2;

run;

proc gplot data = out2;

plot sres2*pred2;

run;

proc univariate data=out2;

qqplot sres2;

run;

Analysis with the mixed linear model

Model (4.3) is fitted with proc mixed as follows. As mentioned we recommend to use Satterthwaite’s
approximation to the degrees of freedom (ddfm=satterth) and allow for negative variance components
(nobound).

proc mixed data = planks nobound;

class plank width depth;

model loghumid = width depth width*depth / ddfm=satterth;

random plank;

run;

The output goes like this (unedited, for this one time):

The Mixed Procedure

Model Information

Data Set WORK.PLANKS

Dependent Variable loghumid

Covariance Structure Variance Components

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based
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Degrees of Freedom Method Satterthwaite

Class Level Information

Class Levels Values

plank 20 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20

width 3 1 2 3

depth 5 1 3 5 7 9

Dimensions

Covariance Parameters 2

Columns in X 24

Columns in Z 20

Subjects 1

Max Obs Per Subject 300

Number of Observations

Number of Observations Read 300

Number of Observations Used 300

Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 -45.97969832

1 1 -352.69281063 0.00000000

Convergence criteria met.

Covariance Parameter

Estimates

Cov Parm Estimate

plank 0.03126

Residual 0.01130

Fit Statistics

-2 Res Log Likelihood -352.7

AIC (smaller is better) -348.7

AICC (smaller is better) -348.7

BIC (smaller is better) -346.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq
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1 306.71 <.0001

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

width 2 266 35.31 <.0001

depth 4 266 94.81 <.0001

width*depth 8 266 0.98 0.4503

Note the message “Convergence criteria met”. This means that the numerical procedure found a solu-
tion. If another message comes up, we cannot trust the results from the fit. We see that the interaction
between width and depth is not significant. We fit model (4.4) without the interaction term (but leave
out the output that shows that both main effects are highly significant).

proc mixed data = planks nobound;

class plank width depth;

model loghumid = width depth / ddfm=satterth;

random plank;

run;

In order to test if model (4.4) can be reduced to model (4.5) we construct the factor with distances, and
fit the model with both the original depth factor and the new distance factor.

data planks;

set planks;

dist = abs(depth-5);

proc print;

run;

proc mixed data = planks nobound;

class plank width depth dist;

model loghumid = width dist depth / ddfm=satterth;;

random plank;

run;

The output is like this (edited), where we see that depth is not significant as long as the distance factor
is in the model.

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 -70.85875516

1 1 -382.34966620 0.00000000

Convergence criteria met.

Covariance Parameter

Estimates

Cov Parm Estimate
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plank 0.03126

Residual 0.01129

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

width 2 274 35.32 <.0001

dist 0 . . .

depth 2 274 0.11 0.8951

Finally we fit model (4.5), ask for the parameter estimates (solution) and the adjusted means (lsmeans):

proc mixed data = planks nobound;

class plank width depth dist;

model loghumid = width dist / ddfm=satterth solution;

random plank;

lsmeans width dist / cl;

run;

And the output:

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 -80.28630752

1 1 -394.22748682 0.00000000

Convergence criteria met.

Covariance Parameter

Estimates

Cov Parm Estimate

plank 0.03126

Residual 0.01122

Solution for Fixed Effects

Standard

Effect width dist Estimate Error DF t Value Pr > |t|

Intercept 1.4577 0.04161 22.2 35.03 <.0001

width 1 0.07637 0.01498 276 5.10 <.0001

width 2 0.1253 0.01498 276 8.37 <.0001

width 3 0 . . . .

dist 0 0.2753 0.01675 276 16.44 <.0001

dist 2 0.2235 0.01368 276 16.35 <.0001

dist 4 0 . . . .

Type 3 Tests of Fixed Effects
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Num Den

Effect DF DF F Value Pr > F

width 2 276 35.55 <.0001

dist 2 276 190.83 <.0001

Least Squares Means

Standard

Effect width dist Estimate Error DF t Value Pr > |t| Alpha Lower Upper

width 1 1.7003 0.04098 20.9 41.49 <.0001 0.05 1.6151 1.7856

width 2 1.7493 0.04098 20.9 42.68 <.0001 0.05 1.6640 1.8345

width 3 1.6239 0.04098 20.9 39.63 <.0001 0.05 1.5387 1.7092

dist 0 1.8002 0.04184 22.7 43.03 <.0001 0.05 1.7136 1.8868

dist 2 1.7484 0.04070 20.4 42.96 <.0001 0.05 1.6636 1.8332

dist 4 1.5249 0.04070 20.4 37.46 <.0001 0.05 1.4401 1.6097

Finally, some useful comments if you prefer to do likelihood ratio tests. Model (4.3) if fitted with ML as
follows:

proc mixed data = planks method=’’ML’’;

class plank width depth;

model loghumid = width depth width*depth;

random plank;

run;

Then, SAS reports −2 · log L(null model). Fit the null model (the model under the hypothesis) similarly.
Then compute the difference between the reported log-likehoods and compare the difference to the
relevant χ2-approximation. Recall that χ2-approximation of the p-value tends to be too small, so be
careful with the conclusisions.

4.3 Analysis of the pork meat data

Example 4.3 (continued) Let us continue with the pork meat data. Recall the random intercepts model
(4.2) with storage, breed and storage× breed as systematic factors and pigno as a random factor:

yi = µ + α(storagei) + β(breedi) + γ(storagei, breedi) + d(pignoi) + εi, i = 1, . . . , 300, (4.7)

First, we carry out model validation. We do so in the “corresponding linear model”, that is, the model
where pigno is fixed rather than random. The residual plot in Figure 4.8 does not indicate variance
heterogeneity, and we are not worried about the QQ-plot either.

Second, we try to reduce the model. It turns out that the interaction storage× breed is not significant
(p ≈ 0.45 depending on the method). In other words, we accept the model

yi = µ + α(storagei) + β(breedi) + d(pignoi) + εi, i = 1, . . . , 300, (4.8)

Both the effect of storage and the effect of breed turn out to be significant in this model (p ≈ 0.0003 and
p ≈ 0.02, respectively) in this model, so (4.8) is the final model.

Third, we estimate interesting parameters (standard errors in parenthesis) in the final model and give
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Figure 4.8: Residual plot and QQ plot for the pork meat data.

conclusions. We get

α̂(dark) − α̂(light) = 1.807 (0.458)

β̂(old)− β̂(new) = 1.131 (0.474)

so the redness is 1.8 larger for dark storage compared to light storage and the redness is 1.1 larger for
the old breed than for the new breed. The variance parameters are estimated to

σ2
pigno = 0.0716; σ2 = 2.100

Finally, we compute the adjusted means, also called least squares means (or LS means). For storage we
find

µ̂ + α̂(dark) + ¯̂β = 6.00 (0.33)

µ̂ + α̂(light) + ¯̂β = 4.19 (0.33)

and for breed we get

µ̂ + ¯̂α + β̂(old) = 5.66 (0.33)

µ̂ + ¯̂α + β̂(new) = 4.53 (0.33)

4.3.1 R programs and output

Example 4.3 (continued) We now show how to analyse the pork meat data with R.

Reading the data into R

Suppose that the data are available in the file redness.txt as follows:

pigno storage breed colour

13 light old 5.5630
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13 dark old 9.5280

41 light old 5.5730

. . . . [more datalines here]

. . . .

286 dark new 6.3960

The dataset is read into R and attached, so we can use the variable names. Moreover, the pigno-variable
is made a factor.

> redness = read.table("redness.txt",header=T)

> attach(redness)

> pigno = factor(pigno)

Model validation

Model validation is carried out in the model where pigno is fixed rather than random. Hence, we can
use lm in order to produce the residual plot and the QQ-plot in Figure 4.8.

> model1 = lm(colour ~ storage*breed + pigno)

> library(MASS)

> plot(predict(model1),stdres(model1))

> qqnorm(stdres(model1))

> qqline(stdres(model1))

Analysis of mixed model with lme

We use lme for the analysis, see Section 4.2.1 for details on the syntax. Here the grouping variable is
pigno.

> library(nlme)

> model2 = lme(colour ~ storage + breed + storage:breed, random=~1|pigno,method="ML")

> model3 = lme(colour ~ storage+breed, random=~1|pigno, method="ML")

> anova(model3,model2)

Model df AIC BIC logLik Test L.Ratio p-value

model3 1 5 151.3832 159.8276 -70.69161

model2 2 6 152.7377 162.8710 -70.36886 1 vs 2 0.6455155 0.4217

The anova-output shows that the interaction between storage and breed is not significant. The p-value if
large enough that there is no need to compute a more accurate approximation of the p-value by bootstrap
methods.

We then test if there is a significant effect of breed. We fit the model without breed, and use anova to test
the model against model (4.8). It turns out that that the approximate χ2-value is 0.019. This in the area
where we may doubt the approximation so we compute a more accurate approximation by bootstrap
and get 0.027. We conclude that there is a (slightly) significant effect of breed.

> model4 = lme(colour ~ storage, random=~1|pigno, method="ML")

> anova(model4,model3)

Model df AIC BIC logLik Test L.Ratio p-value

model4 1 4 154.8893 161.6448 -73.44463

model3 2 5 151.3832 159.8276 -70.69161 1 vs 2 5.506023 0.019



4.3. ANALYSIS OF THE PORK MEAT DATA 71

> sim = simulate.lme(model4, m2=model3, nsim=1000, method="ML")

> lrsim = 2*(sim$alt$ML - sim$null$ML)

> psim = sum(lrsim > 5.506)/1000

> psim

[1] 0.027

Finally we test for the effect of storage which turns out to be significant:

> model5 = lme(colour ~ breed, random=~1|pigno, method="ML")

> anova(model5,model3)

Model df AIC BIC logLik Test L.Ratio p-value

model5 1 4 163.0274 169.7829 -77.51370

model3 2 5 151.3832 159.8276 -70.69161 1 vs 2 13.64417 2e-04

Hence, model3 is the final one.

Estimates from final model

We estimate the final model with REML and get estimates and (approximate) confidence limits by
summary, intervals and VarCorr.

> summary(model3a)

Linear mixed-effects model fit by REML

Fixed effects: colour ~ storage + breed

Value Std.Error DF t-value p-value

(Intercept) 5.4357 0.4058068 19 13.394796 0.0000

storagelight -1.8065 0.4582788 19 -3.941924 0.0009

breedold 1.1313 0.4736546 18 2.388449 0.0281

> intervals(model3a)

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 4.5863365 5.4357 6.2850635

storagelight -2.7656884 -1.8065 -0.8473116

breedold 0.1361886 1.1313 2.1264114

> VarCorr(model3a)

pigno = pdLogChol(1)

Variance StdDev

(Intercept) 0.07164632 0.2676683

Residual 2.10019413 1.4492047

Adjusted means

The adjusted means for storage and breed are obtained by the function estimable from the gmodels-
package. Recall that the package should be installed and loaded first. estimable enables us to estimate
linear combinations of the parameters. We must specify the particular linear combinations we are inter-
ested in.
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For example, we write

µ̂ + α̂(dark) + ¯̂β = 1 · µ̂ + 1 · α̂(dark) + 0 · α̂(light) +
1

2
· β̂(new) +

1

2
· β̂(old) (4.9)

From the summary-output above we see that α(dark) and β(new) have been set to zero by R. Hence, (4.9)
is equal to

1 · µ̂ + 0 · α̂(light) +
1

2
· β̂(old),

so the relevant coefficients are (1,0,1/2). Similarly, the coefficient for µ̂ + α̂(light) + ¯̂β is (1,1,1/2). For
breed we find the coefficients (1,1/2,1) for µ̂ + ¯̂α + β̂(old) and (1,1/2,0) for µ̂ + ¯̂α + β̂(new).

We get estimates, standard errors and (approximate) confidence limits as follows:

> library(gmodels)

> lsmean.dark = c(1,0,0.5)

> lsmean.light = c(1,1,0.5)

> lsmean.old = c(1,0.5,1)

> lsmean.new = c(1,0.5,0)

> lsmeans = rbind(lsmean.dark, lsmean.light, lsmean.old, lsmean.new)

> estimable(model3a,lsmeans,conf.int=0.95)

Estimate Std. Error t value DF Pr(>|t|) Lower.CI Upper.CI

lsmean.dark 6.00135 0.3295330 18.21168 9.0 2.070825e-08 5.255894 6.746806

lsmean.light 4.19485 0.3295330 12.72968 9.0 4.649902e-07 3.449394 4.940306

lsmean.old 5.66375 0.3349244 16.91053 9.5 2.073934e-08 4.912134 6.415366

lsmean.new 4.53245 0.3349244 13.53276 9.5 1.593678e-07 3.780834 5.284066

R also comes with a warning message which has to do with the computation of de degrees of freedom.
The confidence intervals are only approximate.

Analysis with lmer

We could have fitted model (4.7) and (4.8) with lmer instead. The difference, compared to lme, is the
specification of the random effect:

> library(lme4)

> model2a = lmer(colour ~ storage*breed + (1|pigno))

> model3a = lmer(colour ~ storage+breed + (1|pigno))

Analysis of mixed model with aov

Exact F-tests can be carried out since the design is balanced. Here we just show how to fit model (4.7)
with aov. This gives the test for interaction.

> model6 = aov(colour ~ storage*breed + Error(pigno))

> summary(model6)

Error: pigno

Df Sum Sq Mean Sq F value Pr(>F)

breed 1 12.798 12.798 5.7047 0.02808 *

Residuals 18 40.383 2.243



4.3. ANALYSIS OF THE PORK MEAT DATA 73

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

storage 1 32.634 32.634 15.2038 0.001051 **

storage:breed 1 1.267 1.267 0.5904 0.452213

Residuals 18 38.636 2.146

Then the model without interaction is fitted and the relevant hypotheses are tested.

4.3.2 SAS programs and output

Example 4.3 (continued) We now show how to analyse the pork meat data with SAS.

Reading the data into SAS

Suppose that the data are available in the file redness.txt as follows:

pigno storage breed colour

13 light old 5.5630

13 dark old 9.5280

41 light old 5.5730

. . . . [more datalines here]

. . . .

286 dark new 6.3960

Then the dataset is read into SAS with the following program lines:

data redness;

infile ’redness.txt’ firstobs=2;

input pigno storage $ breed $ colour;

run;

Model validation

A residual plot and a QQ-plot similar to those of Figure 4.8 are produced as follows. The output is not
shown.

proc glm data=redness;

class storage breed pigno;

model colour = storage breed storage*breed pigno;

output out=out1 predicted=pred student=sres;

run;

proc gplot data=out1;

plot sres*pred;

proc univariate data=out1;

qqplot sres;

run;
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Analysis of mixed linear model

Model (4.7) is fitted with proc mixed (see Section 4.2.2 for details on the syntax):

proc mixed data=redness nobound;

class storage breed pigno;

model colour = storage breed storage*breed / ddfm=satterth;

random pigno;

run;

The output goes like this (edited):

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 139.67605395

1 1 139.66725932 0.00000000

Convergence criteria met.

Covariance Parameter

Estimates

Cov Parm Estimate

pigno 0.04851

Residual 2.1465

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

storage 1 18 15.20 0.0011

breed 1 18 5.70 0.0281

storage*breed 1 18 0.59 0.4522

Note the message “Convergence criteria met”. This means that the numerical procedure found a solu-
tion. If another message comes up, we cannot trust the results from the fit. We see that the interaction
between storage and breed is not significant. We fit model (4.8) without the interaction term. Moreover,
we ask SAS for the adjusted means (LS means) with confidence limits.

proc mixed data=redness nobound;

class storage breed pigno;

model colour = storage breed / ddfm=satterth solution clparm;

random pigno;

lsmeans storage breed / cl;

run;

The output goes as follows, this time in an edited version:
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The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 141.95877041

1 1 141.93862944 0.00000000

Convergence criteria met.

Covariance Parameter

Estimates

Cov Parm Estimate

pigno 0.07165

Residual 2.1002

Solution for Fixed Effects

Standard

Effect storage breed Estimate Error DF t Value Pr > |t| Alpha Lower Upper

Intercept 4.7605 0.4058 32.1 11.73 <.0001 0.05 3.9340 5.5870

storage dark 1.8065 0.4583 19 3.94 0.0009 0.05 0.8473 2.7657

storage light 0 . . . . . . .

breed new -1.1313 0.4737 18 -2.39 0.0281 0.05 -2.1264 -0.1362

breed old 0 . . . . . . .

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

storage 1 19 15.54 0.0009

breed 1 18 5.70 0.0281

Least Squares Means

Standard

Effect storage breed Estimate Error DF t Value Pr > |t| Alpha Lower Upper

storage dark 6.0014 0.3295 36.9 18.21 <.0001 0.05 5.3336 6.6691

storage light 4.1949 0.3295 36.9 12.73 <.0001 0.05 3.5271 4.8626

breed new 4.5325 0.3349 18 13.53 <.0001 0.05 3.8288 5.2361

breed old 5.6638 0.3349 18 16.91 <.0001 0.05 4.9601 6.3674
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Chapter 5

Repeated measurements

In this chapter we will analyze data from experiments where several measurements of some physical
quantitity is taken from each experimental unit or subject (person, animal, plant or similar) during the
experimental period. This data type occurs quite often, and we refer to it as repeated measures.

Usually we think of repeated measures as observations on the same experimental unit at several time-
points, but it might just as well be at different locations of the same unit, for example different locations
in the blood stream. In the following we will think of the time situation. Often the experimental units
are divided into groups each of which is given a particular treatment. The goal is then typically to
compare the treatments. Moreover, one is often interested in the development over time (and the effect
of treatment on the this time-response relation).

Example 5.1 (Growth of rats) An experiment was carried out in order to investigate the effect of thy-
roxin and thiouracil on the growth of rats. During a period of five weeks, 7 rats has thyroxin added to
their drinking water, 10 rats has thiouracil added, and another 10 rats were used as controls. The rats
were weighed each week. Table 5.1 shows the log-transformed weight. The goal is to compare the three
treatment groups: is the growth similar or different in the three groups? �

Had all measurements been taken from different experimental units, a simple linear or non-linear re-
gression analysis with treatment dependent coefficients (and independent observations) would have
been natural. With repeated measures, however, it is not reasonable to assume independence between
all observations. Rather, observations from same experimental units tend to be positively correlated,
and observations taken close in time tend to more correlated than observations not close in time. This
must be taken into account in the analysis. In principle we have less information about the treatment
differences compared to the situation where all measurements come from different experimental units.
On the other hand we have more information about the time development with repeated measures.

In the following, we will discuss three different analysis strategies: analysis of summary measures,
analysis with the random intercepts model (corresponding to the split-plot model) and analysis with a
model incorporating a more sophisticated correlation structure.

Finally, a warning: At first sight a natural idea might be to analyze the data for each point in time
seperately. This is usually not a good idea, though (except for exploratory analysis)! First, since only
few data are used in each analysis the analyses are not so strong as is an analysis of the full dataset.
In other words, (treatment) differences should be large in order to come out significant. Second, the
analyses (tests) are not independent as they are based on observations from the same subjects. Third, it
is difficult to give an overall conclusion if the different analyses result in different conclusions. Fourth,
the analyses would not tell much about the development over time. In summary, the analysis method

77
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Week 1 2 3 4 5
Rat Treatment log weight (g)
1 Kontrol 4.0431 4.4543 4.7362 4.9345 5.1475
2 Kontrol 4.0943 4.5326 4.8122 4.9836 5.1761
3 Kontrol 3.9512 4.3438 4.7095 4.9698 5.2204
4 Kontrol 3.8918 4.2047 4.6052 4.8598 5.0999
5 Kontrol 4.0254 4.3944 4.6444 4.7958 5.0173
6 Kontrol 3.8286 4.2485 4.6250 4.8752 5.0304
7 Kontrol 3.9318 4.2627 4.5433 4.7005 4.9488
8 Kontrol 4.1431 4.5109 4.7185 4.8675 5.0370
9 Kontrol 3.8918 4.2047 4.4998 4.7185 4.9416
10 Kontrol 4.0431 4.4067 4.7005 4.9345 5.1299
11 Thyroxin 4.0775 4.4427 4.7958 4.9836 5.1985
12 Thyroxin 3.9890 4.2627 4.4998 4.7005 4.9273
13 Thyroxin 4.0254 4.3175 4.6821 5.0173 5.2417
14 Thyroxin 4.0775 4.4427 4.7536 4.9972 5.1761
15 Thyroxin 4.0431 4.2767 4.5747 4.7875 4.9698
16 Thyroxin 3.9512 4.2905 4.5747 4.7536 4.9416
17 Thyroxin 3.9512 4.2485 4.6540 4.9273 5.1417
18 Thiouracil 4.1109 4.4543 4.6913 4.7875 4.8598
19 Thiouracil 4.0775 4.3820 4.6151 4.7095 4.8040
20 Thiouracil 3.9703 4.3694 4.6052 4.6634 4.8903
21 Thiouracil 4.0775 4.4773 4.6052 4.7095 4.8040
22 Thiouracil 3.9318 4.3175 4.6151 4.8122 4.9416
23 Thiouracil 3.9318 4.3175 4.5218 4.6052 4.7791
24 Thiouracil 4.0254 4.3567 4.5539 4.6347 4.6821
25 Thiouracil 4.0604 4.2341 4.5326 4.7536 4.9416
26 Thiouracil 3.8286 4.1109 4.3567 4.4998 4.6728
27 Thiouracil 3.9703 4.2767 4.4886 4.6444 4.8040

Table 5.1: The growth of rats data.

is not plain wrong but not very informative, either.

5.1 Illustrative plots

As always it is a good idea to explore the data graphically before the actual analysis. Perhaps even more
so for repeated measurements as it gives an idea about the development over time. We recommend two
types of plots: subject profile plots and average profile plots.

The subject profiles show the observed curve, response against time, for each subject. Hence, we get
an idea what the typical time-response relation is like. The curves could be marked after treatment so
potential treatment differences may be spotted already here if the picture is not too blurred. Alterna-
tively, and depending on the number of subjects, a graph for each treatment could be made. Note that
strange-looking subjects (potential outliers) are often detected in the subject profile plot.

The average profiles show the average (over subjects) response against time for each treatment. Treatment
differences are often depicted in these plots. These plots also illustrate the interaction between treat-
ment and time. We can of course not see from the plots whether the interaction and potential different
treatment effects are significant; a proper statistical analysis is needed for that.
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Example 5.1 (continued) Figure 5.1 shows the profiles for each rat (to the left) and the average profiles
(to the right).
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Figure 5.1: Profile plots for the rats data. Solid curves are control, dashed are thryroxin, dotted are
thiouracil.

The rat profiles show that the logarithmic weight increases over time. The relationship does not seem to
be linear; rather there seems to be a curvature suggesting a quadratic relationship. There is a single rat
for which the curve is somewhat different compared to the others. From the plot it it difficult to judge if
there is a treatment effect, but it may seem like the thiouracil rats (dotted curves) are slightly below the
control rats and the thyroxin rats.

This impression is strengthened in the average profile plot. The thiouracil average is lower in the later
weeks compared to the control and thyroxin averages. Moreover, there seems to be an interaction be-
tween treatment and time. This will of course be tested in the analysis. �

5.1.1 R programs

We here show how to read the data, construct appropriate variables, and profile plots. At first sight it
might not be clear exactly what happens all the time. My best advice is: go home and try it line by line
and see for yourself what happens!

Reading the data

Suppose that the data are available in the file thyroxin.txt as follows:

rat treat logw1 logw2 logw3 logw4 logw5

1 Control 4.0431 4.4543 4.7362 4.9345 5.1475

2 Control 4.0943 4.5326 4.8122 4.9836 5.1761

. . . . . . . [more datalines here]

. . . . . . .

27 Thiouracil 3.9703 4.2767 4.4886 4.6444 4.8040

We read the data into the dataset rats, and attach it as usual.
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> rats = read.table("thyroxin.txt",header=T)

> attach(rats)

Note that the data file has a line for each subject (rat), rather than a line per measurement as usual. For
some purposes this structure is nice, for other purposes we need the usual structure. The following
commands create vectors of length 135, one per measurement. The new rat variable, newrat is made
a factor. Moreover we create a week factor, weekfac, and a variable week2 with the squared values of
week. Note that week and week2 are numerical variables. These are for later use.

> newrat = rep(rat,5)

> newrat = factor(newrat)

> logw = c(logw1,logw2,logw3,logw4,logw5)

> newtreat = rep(treat,5)

> week = c(rep(1,27),rep(2,27),rep(3,27),rep(4,27),rep(5,27))

> weekfac = factor(week)

> week2 = week*week

Subject profile plot

There are various ways to create subject profile plots similar to the left plot in Figure 5.1. Here we show
one of them. First we make an “empty” plot (type="n") with only labels and axes. Thereafter we add
the profiles for the 27 rats: points makes R add to an existing plot instead of making a new one. We
make curves rather than points (type="l"). For the control rats we use solid curves (lty=1), for the
thyroxin rats we use dashed curves (lty=2), and for thiouracil rats we use dotted lines (lty=3).

> plot(week,logw,type="n")

> for (i in 1:27)

{

rati = c(logw1[i],logw2[i],logw3[i],logw4[i],logw5[i])

if (i<=10) points(c(1:5),rati,type="l", lty=1)

if (i>=11 && i<=17) points(c(1:5),rati,type="l", lty=2)

if (i>=18) points(c(1:5),rati,type="l", lty=3)

}

Average profile plot

There are also numerous ways to construct the average profile plots. We show one of them. First the 15
average values are computed, five for each of the three treatments, by plugging out the relavant values
from the logw-variable. The values are stored treatment-wise in three vectors. Then an empty plot with
appropriate axes are made, and finally the three treatment profiles are added.

> cont.mean = rep(0,5)

> for (j in 1:5) cont.mean[j] = mean(logw[(27*(j-1)+1) : (27*(j-1)+10)])

> thy.mean = rep(0,5)

> for (j in 1:5) thy.mean[j] = mean(logw[(27*(j-1)+11) : (27*(j-1)+17)])
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> thiou.mean = rep(0,5)

> for (j in 1:5) thiou.mean[j] = mean(logw[(27*(j-1)+18) : (27*(j-1)+27)])

> plot(c(1:5),type="n",ylim=c(3.9,5.1))

> points(c(1:5), cont.mean, type="l",lwd=2,lty=1)

> points(c(1:5), thy.mean, type="l",lwd=2,lty=2)

> points(c(1:5), thiou.mean, type="l",lwd=2,lty=3)

5.1.2 SAS programs

Reading the data

Suppose that the data are available in the file thuroxin.txt as follows:

rat treat logw1 logw2 logw3 logw4 logw5

1 Control 4.0431 4.4543 4.7362 4.9345 5.1475

2 Control 4.0943 4.5326 4.8122 4.9836 5.1761

. . . . . . . [more datalines here]

. . . . . . .

27 Thiouracil 3.9703 4.2767 4.4886 4.6444 4.8040

We read the data as usual:

data rats;

infile ’c:\thyroxin.txt’ firstobs=2;

input rat treat $ v1 v2 v3 v4 v5;

proc print;

run;

Note that the data set has a line for each subject (rat), rather than a line per measurement as usual. For
some purposes this structure is nice, for other purposes we need the usual structure. The program lines
below create a new dataset, rats1 with the usual structure: 1week and 1week1 are identical, but we will
need both in the analysis, one as a factor and one a as numerical variable. week2 contains the squared
week-values. The response is called logw.

data rats1;

set rats;

if v1 then do; week=1; week1=1; week2=1; logw=v1; output; end;

if v2 then do; week=2; week1=2; week2=4; logw=v2; output; end;

if v3 then do; week=3; week1=3; week2=9; logw=v3; output; end;

if v4 then do; week=4; week1=4; week2=16; logw=v4; output; end;

if v5 then do; week=5; week1=5; week2=25; logw=v5; output; end;

drop v1 v2 v3 v4 v5;

proc print;

run;

Profile plots

The subject profile plots are constructed as follows:

symbol1 i=join v=none c=black repeat=27;

proc gplot data=rats1;
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plot logw * week = rat;

run;

The average profile plots are constructed as follows. First the 15 averages, one per combination of
treatments and week, are computed. Then they are plotted against week.

proc means data=rats1 nway;

var logw;

class treat week;

output out=out1 mean = meanlogw;

run;

proc gplot data=out1;

plot meanlogw*week=treat;

run;

5.2 Analysis of summary measures

As already mentioned the dependence between observations from the same subject must be taken into
account in a valid statistical model.

One way to overcome this “problem” is to analyze a so-called summary measure. The idea is to reduce
the curve for each subject to a single value — a value that summarizes the curve. Some common choices
are the average response (over time), the area under the curce, the slope of the curve, the increment
(final measurement minus first measurement), the response at the final time-point, the size or position
of a peak.

The analysis of such a summary measure is quite simple: since there is only one value per subject, we
can assume independence and we are thus back to the linear models (unless there are other random
effects to take into account, like family).

The hard thing is to choose reasonable summary measures: a good summary measures measures some-
thing important! That is, something that charachterizes the individual curves. Not all of the above
examples would be reasonable in all cases. You may be inspired from the subject profile plot to see what
charachterizes the individual profiles. You may not, however — and this is important, have an eye to
the treatment effects when you choose a summary measure! This is called significance hunting: if you
look hard enough for significant differences, you will end up finding some. In other words, you are not
allowed choose your choice of summary measure based on inspection of treatment differences.

Analysis of a good summary measure (or perhaps two reflecting different aspects of the curves, but not
too many) is often very useful, at least as a preliminary analysis. It is robust and easy to carry out. On the
other hand it does not allow investigation of the development over time, and it it not quite satisfactory
to use only a small part of the data (we have thrown good data away). In other words, we need methods
that use all the data.

Example 5.1 (continued) For the growth of rats data we could for example use the increment of the
logarithmic weight from week 1 to week 5 as a summary measure. That is, we have the observation
1.1044 for the first rat, 1.0818 for second rat etc. The analysis of this summary measure is left the reader
as an exercise. �
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5.3 Analysis with random intercepts (the split-plot model)

A quite common model for repeated measurements is the random intercepts model. In the random inter-
cepts model subject is used as a random factor. We can think of this as a random displacement of the
intercept for each subject: some subjects generally (at all times) have a high level of the response, others
generally have a low level.

Measurements from different subjects are independent, but the random intercepts model introduces
correlation between any two measurements from the same subject. Every two measurements from the
same subject share the same correlation, namely σ2

sub/(σ2 + σ2
sub) where σ2 is the measurement error

(residual) variance and σ2
sub is the between-subjects variance. If there are only a few measurements

per subject, or if the measurements are far from each other in time, this may very well be an adequate
description of the correlation structure in the model.

Generally we would, however, believe that measurements that are close in time tend to be “more alike”
than observations far away in time from each other. In Section 5.4 we discuss a model with such a
correlation structure. The random intercepts model is a submodel of this more complex model, so we
can actually test whether the more advanced model is significantly better at describing our data.

Note that the random intercepts model is equivalent to the split-plot model with subjects as whole plots,
treatments as whole plot factor, and time as subplot factor. Since time is not randomly allocated, the
split-plot interpretaion does not make much sense, though, and it is better to think of random intercepts.
But the analysis is just the same as for the split-plot model.

Example 5.1 (continued) The random intercepts analysis of the growth of rats data is left to the reader
as an exercise. �

5.4 A model for repeated measures

As argued above it is often reasonable to believe that the correlation between pairs of measurements on
the same subject decreases as the time-lag between the measurements increases. We want to take this
into account in the analysis. In other words, we want models that describe the seriel correlation structure
of our data. We will consider one such model here, which we will refer to as the Diggle-model.

Note, however, that there are numerous other models, and it is not straight-forward how to choose
between them. SAS and R computes some information criteria (AIC and BIC) which can be used a
guidelines. However, the quality of such model selection criteria is still a matter of debate, and we will
not discuss them any further. A closely related issue is model validation: how do we check that the seriel
correlation structure of our model is adequate for our data? This is a matter os debate, too. Graphical
methods, comparing the empirical correlations and the estimated model correlations as a function of
time-lag exist, but are most useful if there are more than just a few observations on each subject. An
example is the semi-variogram which is quite easy to make in R.

Note, that the random intercepts model, assuming that the correlation between any two meaurements
is constant, is a submodel of the Diggle-model. Hence, if we wish, we can test for the model reduction
from the Diggle model to the random intercepts model.

Let us consider the growth of rats data again.

Example 5.1 (continued) The relevant explanatory variables are treatment, week and rat. We will in-
clude treatment and week as well as their interaction as fixed effects. Rat is obviously a random effect.
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This suggests the model

yi = γ(treati, weeki) + a(rati) + ei, i = 1, . . . , 135 (5.1)

where a(j) ∼ N(0, ν2), ei ∼ N(0, σ2), and they are all independent. As usual, ν2 measures the variation
between rats, and σ2 measures the variation between measurements from the same rat (the within-rat
variation).

This model is the random intercepts model with correlation ν2/(ν2 + σ2) for any two pairs of measure-
ments on the same subject. In order to get the property that the correlation decreases as the the time-lag
increases we add another term to the model:

yi = γ(treati, weeki) + a(rati) + bi + ei (5.2)

where bi ∼ N(0, τ2) and

corr(bi1 , bi2) =

{
0 rati1 6= rati2
exp

(
−(weeki1 − weeki2)

2/φ2
)
, rati1 = rati2

Then the variance of each yi is a sum of three terms,

Varyi = ν2 + τ2 + σ2.

Measurements from different rats are independent (uncorrelated) whereas measurements, yi1 and yi2 ,
from the same rat are correlated with correlation

ν2 + τ2 exp
(
−(weeki1 − weeki2)

2/φ2
)

ν2 + τ2 + σ2
(i1 6= i2)

Recall that weeki1 − weeki2 measures the time-lag between measurement i1 and i2, so the correlation
structure has the property that we were looking for. The parameter φ determines how fast the correlation
decreases.

In the left part of Figure 5.2 we have shown the residual plot for the corresponding linear model. It
looks quite okay. In the right part we have plotted the semi-variogram, illustrating the appropriateness
of the correlation structure of the models. The x-axis is week-distance and the y-axis is a function of
correlation. The dots are empirical quantities (that is, computed from the data only), whereas the curve
illustrates the model estimates of the same quantities. If the curve fits the points nicely, then the model
catches the features in the data. It looks all right, but other models might fit just as well, since there are
only five measurements for each rat. Anyway, the plots do not make us worried.

That was the definition of the Diggle model. Now, let us turn to model reduction. First, we might try to
reduce model (5.2) to the random intercepts model (5.1).

Generally, we recommend to carry out model reduction in the random part of the model by comparing
the restricted log-likelihood functions. This is similar to likelihood ratio tests, except that we use REML
estimation rather than ML estimation. In other words: fit both the Diggle model and the random intercepts
model with REML, compute the difference in maximum restricted log-likelihoods, and multiply it by
two. We then just need to compare it to its distribution on order to get a p-value. Unfortunately this
is not straight-forward as the asymptotic distrubution (for this particular hypothesis) is not the χ2(2)-
distribution as one might believe. An approximate p-value may rather be obtained by simulation.

For the rats data, we are “lucky”, though: The maxmum restricted log-likelihoods turn out to be 162.6
for the Diggle model and 127.0 for the random intercepts model, so our test statistic is as large as

REML-LR = 2 · (162.6− 127.0) = 71.2.
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Figure 5.2: Residual plot and semi-variogram for the rats data.

There is no doubt that this value is highly significant, so we cannot accept the random intercepts model.
Comparing with the semi-variogram form Figure 5.2 this is not surprising: the random intercepts model
corresponds to constant variogram, which clearly does not fit the data.

Then, we try to reduce the systematic part of the model. We first test if the interaction between treatment
and time is significant, that is, test if model (5.2) can be reduced to

yi = α(treati) + β(weeki) + a(rati) + bi + ei. (5.3)

This model reduction turns out not to be possible, p < 0.0001. In other words, the treatment-effect is not
the same at all five time-points.

Inspired by the subject profile plot in Figure 5.1 (and the random intercepts analysis from an exercise),
we then test if the relationship between week (time) and logarithmic weight can be described with
second-order polynomials, one per treatment. This corresponds to

yi = α(treati) + δ(treati) · weeki + ψ(treati) · week2
i + a(rati) + bi + ei. (5.4)

This is not possible either (p < 0.0001).

Hence, model (5.2) has not been reduced. We report the differences in expected log-weights between
control and thyroxin and between control and thiouracil for each week in Table 5.2 together with p-
values for each difference being zero. We see that there is no effect of Thyroxin at any time, whereas
there is an effect of Thiouracil from week 3 and onwards.

It would perhaps have been better to test the effect of thyroxin in one test rather than one test per week.
It is left to the reader to consider how to do this!

It is often a good idea to illustrate the results graphically by plotting the expected log-weights (or
weigths) in a figure similar to the right plot of Figure 5.1. However, since the interaction between
treatment and week is still in the model, the relevant figure would be almost indistinguishable from
that plot.

Finally, we give the estimates of the variance parameters in model (5.2):

σ̂2 = 0.000334, ν̂2 = 0.00325, τ̂2 = 0.00575, φ̂ = 2.2433
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Week Control – Thiouracil Control – Thyroxin

1 -0.0140 (0.0432) 75% -0.0320 (0.0476) 50%

2 0.0267 (0.0432) 54% 0.0304 (0.0476) 52%

3 0.1009 (0.0432) 2% 0.0116 (0.0476) 81%

4 0.1820 (0.0432) 0% -0.0170 (0.0476) 72%

5 0.2570 (0.0432) 0% -0.0104 (0.0476) 83%

Table 5.2: Estimated expected differences (s.e) for the growth of rate data and p-values for the hypothesis
of no difference.

5.4.1 R programs and output

Fit of the Diggle model and model validation

First, the linear model corresponding to (5.2) is fitted and the residual plot is constructed:

> model10.lm = lm(logw ~ newtreat*weekfac+newrat)

> plot(predict(model10.lm),stdres(model10.lm))

Next, model (5.2) is fitted and the semi-variogram is constructed. The model is fitted quite similarly
to the random intercepts model, except that the seriel correlation structure should be specified. This is
done by the corr-statement. corGaus specifies that we use the Diggle model, form =˜ week | newrat

that our subjects are given by newrat and that week is our time variable. nugget = T specifies that there
is also measurement errors (the ei’s) in the model.

> model10 = lme(logw ~ newtreat*weekfac, random =~ 1|newrat,

corr = corGaus(form = ~ week | newrat, nugget=T),

method="REML")

> plot(Variogram(model10, form =~ week), ylim=c(0,1))

Test of random intercepts model

The random intercepts model is fitted in the usual way, and anova is used for the test. Note that we have
fitted both models with REML. This is what we recommend for model reduction in the random part of
the model.

> model11 = lme(logw ~ newtreat*weekfac, random =~ 1|newrat, method="REML")

> anova(model11,model10)

Model df AIC BIC logLik Test L.Ratio p-value

model11 1 17 -219.9473 -172.5599 126.9736

model10 2 19 -287.1166 -234.1542 162.5583 1 vs 2 71.16929 <.0001

For this particular hypothesis it is known that the test statistics is not χ2(2)-distributed as one should
think (not even approximately). Hence, we would have liked to compute an approximate p-value by
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bootstrap. Unfortunately simulate.lmedoes not apply to models with seriel correlation structure. This
is not a problem for this particular dataset, though, as the REML-LR test statistic is very large so there is
no doubt that the random intercepts model is not appropriate for the data.

Reduction of the systematic part of the model

We cannot use REML when testing hypotheses about the systematic part of the model. Hence, we fit all
models with ML.

First we fit the full model (5.2) and model (5.3) without interaction, and test for model reduction:

> model10a = lme(logw ~ newtreat*weekfac, random =~ 1|newrat,

corr = corGaus(form = ~ week | newrat, nugget=T),

method="ML")

> model12 = lme(logw ~ newtreat+weekfac, random =~ 1|newrat,

corr = corGaus(form = ~ week | newrat, nugget=T),

method="ML")

> anova(model12,model10a)

Model df AIC BIC logLik Test L.Ratio p-value

model12 1 11 -356.7327 -324.7746 189.3663

model10a 2 19 -380.5067 -325.3065 209.2533 1 vs 2 39.77401 <.0001

Next, we fit the quadratic model (5.4) and test for model reduction:

> model13 = lme(logw ~ newtreat + week + week2 + newtreat:week + newtreat:week2,

random =~ 1|newrat,

corr = corGaus(form = ~ week | newrat, nugget=T),

method="ML")

> anova(model13,model10a)

Model df AIC BIC logLik Test L.Ratio p-value

model13 1 13 -358.3250 -320.5564 192.1625

model10a 2 19 -380.5067 -325.3065 209.2533 1 vs 2 34.18168 <.0001

Estimation in the final model

Since model (5.2) could not be reduced we fit it with REML. We choose the parameterization without
intercept. VarCorr only gives us estimates for ν2 and σ2 + τ2. You can have the remaining information
from model10b. Alternatively, all that information (and a whole lot more) comes out with summary.

> model10b = lme(logw ~ newtreat:weekfac-1, random =~ 1|newrat,

corr = corGaus(form = ~ week | newrat, nugget=T),

method="REML")

> VarCorr(model10b)

newrat = pdLogChol(1)

Variance StdDev

(Intercept) 0.003251906 0.05702549

Residual 0.006080664 0.07797861

> model10b
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Correlation Structure: Gaussian spatial correlation

Formula: ~week | newrat

Parameter estimate(s):

range nugget

2.2432381 0.0548862

The output requires some explanation: The “intercept variance” is the estimate of ν2. The “residual
variance” is the estimate of σ2 + τ2. The “range” parameter estimate φ , and the “nugget” parameter is
σ2/(σ2 + τ2). Hence, we have the following equations:

ν̂2 = 0.00325, σ2 + τ2 = 0.00608, φ̂ = 2.24,
σ̂2

σ̂2 + τ̂2
= 0.0549

Solving for the original parameters we find

ν̂2 = 0.00325, σ̂2 = 0.0549 · 0.00608 = 0.000334, τ̂2 = 0.00608− 0.000334 = 0.00575, φ̂ = 2.24,

Finally, we estimate the expected differences from Table 5.2 with estimable. We show only the differ-
ence between Control and Thiouracil here, the difference Control-Thyroxin differences are computed
similarly.

> library(gmodels)

> thy1 = c(1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0)

> thy2 = c(0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0)

> thy3 = c(0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0)

> thy4 = c(0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0)

> thy5 = c(0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1)

> thydifs = rbind(thy1,thy2,thy3,thy4,thy5)

> thyest = estimable(model10b, thydifs)

> thyest

Estimate Std. Error t value DF Pr(>|t|)

thy1 -0.03199429 0.04760758 -0.6720419 94 0.5032055

thy2 0.03043000 0.04760758 0.6391840 94 0.5242578

thy3 0.01164571 0.04760758 0.2446189 94 0.8072847

thy4 -0.01703000 0.04760758 -0.3577162 94 0.7213577

thy5 -0.01035286 0.04760758 -0.2174624 94 0.8283194

5.4.2 SAS programs and output

We use proc mixed for analysis of the Diggle model. The seriel correlation structure is given in a
repeated-statement. Note that we do not use nobound and ddfm = sattherth in case of repeated mea-
surements.

Model validation

A residual plot similar to that of Figure 5.1 is produced as follows, fitting the linear model corresponding
to (5.1):

proc glm data=rats1;

class rat week treat;
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model logw = treat*week rat;

output out=out2 predict = pred student = stdres;

run;

proc gplot data = out2;

plot stdres*pred;

run;

Fit of the Diggle model and test of random intercepts model

First, let us fit the random intercepts model:

proc mixed data=rats1;

class rat week treat;

model logw = treat*week;

random rat;

run;

In this analysis we are only going to use the maximum restricted log-likelihood, so we only show a little
part of the output here. We see that −2 log ResL = 253.9.

Fit Statistics

-2 Res Log Likelihood -253.9

AIC (smaller is better) -249.9

AICC (smaller is better) -249.8

BIC (smaller is better) -247.4

The Diggle model is fitted with proc mixed. The syntax is the usual, except that a repeated-statement
should be included. week tells SAS which variable describes time, subject=rat tells SAS which factor is
the subject factor. This is general for all models with a seriel correlation structure. The type tells SAS

which model to use for the seriel structure. SAS has a lot of possibilities (around 30!); sp(gau) is the Dig-
gle model; again SAS needs to know what is the time variable. local makes SAS include measurement
errors as well (the ei’s), and R makes SAS write the estimated correlation matrix for measurements on
the same rat. The latter is sometimes useful. Note that we do not use nobound and ddfm = sattherth

in case of repeated measurements.

proc mixed data=rats1;

class rat week treat;

model logw = treat*week;

random rat;

repeated week / subject=rat type=sp(gau)(week1) local R;

run;

The output goes like this:

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 -177.80311592
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1 4 -191.72670851 .

. . .

. . .

13 1 -325.11657152 0.00000000

Convergence criteria met.

Estimated R Matrix for rat 1

Row Col1 Col2 Col3 Col4 Col5

1 0.006081 0.004711 0.002596 0.000961 0.000239

2 0.004711 0.006081 0.004711 0.002596 0.000961

3 0.002596 0.004711 0.006081 0.004711 0.002596

4 0.000961 0.002596 0.004711 0.006081 0.004711

5 0.000239 0.000961 0.002596 0.004711 0.006081

Covariance Parameter Estimates

Cov Parm Subject Estimate

rat 0.003252

Variance rat 0.005747

SP(GAU) rat 2.2433

Residual 0.000334

Fit Statistics

-2 Res Log Likelihood -325.1

AIC (smaller is better) -317.1

AICC (smaller is better) -316.8

BIC (smaller is better) -311.9

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

week*treat 14 96 198.33 <.0001

We see that −2 log ResL = 325.1. Compared to the random intercepts model we find the test statistic

REML-LR = 325.1− 253.9 = 71.2.

For this particular hypothesis it is known that the test statistics is not χ2(2)-distributed as one should
think (not even approximately). This is not a problem for this particular dataset, though, as the test
statistic is very large so it is clear that the random intercepts model is not appropriate for the data.

Reduction of systematic part of the model

We then move on to the systematic part of the model. First, the test for interaction between week and
treatment. It has already been carried out by the above fit of the Diggle model. The above output shows
a F-value of 360.5, and a p-value less than 0.0001.
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Next, the test for model (5.4) against (5.2). One way to carry out this test is to fit (5.4) again, but this time
with the “original” interaction term treat× week (with week as factor) as well as the interaction terms
treat× week1 (week1 a covariate) and treat× week2 (week2 the squared values, also a covariate) in the
model statement.

It turns out that SAS has numerical problems: we get a warning that SAS “stopped beacuse of infinite
likelihood”. We fix the problem by giving SAS some starting values, namely those obtained from the
above output.

proc mixed data=rats1;

class rat week treat;

model logw = treat week1 week2 treat*week1 treat*week2 treat*week;

random rat;

repeated week / subject=rat type=sp(gau)(week1) local R;

parms (0.003) (0.005) (2.24) (0.0003) / noprofile;

run;

From the output we see that the interaction term treat× week is still significant:

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

1 2 -320.95766697 0.00000008

2 1 -320.95768845 0.00000000

Convergence criteria met.

Estimated R Matrix for rat 1

Row Col1 Col2 Col3 Col4 Col5

1 0.006081 0.004711 0.002595 0.000961 0.000239

2 0.004711 0.006081 0.004711 0.002595 0.000961

3 0.002595 0.004711 0.006081 0.004711 0.002595

4 0.000961 0.002595 0.004711 0.006081 0.004711

5 0.000239 0.000961 0.002595 0.004711 0.006081

Covariance Parameter Estimates

Cov Parm Subject Estimate

rat 0.003252

Variance rat 0.005747

SP(GAU) rat 2.2432

Residual 0.000334

Fit Statistics

-2 Res Log Likelihood -321.0

AIC (smaller is better) -313.0

AICC (smaller is better) -312.6

BIC (smaller is better) -307.8
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Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

treat 2 96 0.58 0.5633

week1 0 . . .

week2 0 . . .

week1*treat 0 . . .

week2*treat 0 . . .

week*treat 6 96 6.48 <.0001

Estimation in the final model

Hence, model (5.2) is the final model. We fit it again, this time asking for comparison of the adjusted
means, since this also gives us the estimated expected differences from Table 5.2.

proc mixed data=rats1;

class rat week treat;

model logw = treat*week / solution;

random rat;

repeated week / subject=rat type=sp(gau)(week1) local R;

lsmeans treat*week / pdiff;

run;

The output is enormous beacuse of all the comparisons. We only show little part of it. From the output
we also take out the variance estimates.

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 -177.80311592

1 4 -191.72670851 .

. . . .

. . . .

13 1 -325.11657152 0.00000000

Convergence criteria met.

Estimated R Matrix for rat 1

Row Col1 Col2 Col3 Col4 Col5

1 0.006081 0.004711 0.002596 0.000961 0.000239

2 0.004711 0.006081 0.004711 0.002596 0.000961

3 0.002596 0.004711 0.006081 0.004711 0.002596

4 0.000961 0.002596 0.004711 0.006081 0.004711

5 0.000239 0.000961 0.002596 0.004711 0.006081

Covariance Parameter Estimates

Cov Parm Subject Estimate

rat 0.003252
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Variance rat 0.005747

SP(GAU) rat 2.2433

Residual 0.000334

Fit Statistics

-2 Res Log Likelihood -325.1

AIC (smaller is better) -317.1

AICC (smaller is better) -316.8

BIC (smaller is better) -311.9

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

week*treat 14 96 198.33 <.0001

Least Squares Means

Standard

Effect treat week Estimate Error DF t Value Pr > |t|

week*treat Control 1 3.9844 0.03055 96 130.43 <.0001

week*treat Thiourac 1 3.9985 0.03055 96 130.89 <.0001

. . . . . . . .

. . . . . . . .

week*treat Thyroxin 5 5.0852 0.03651 96 139.27 <.0001

Differences of Least Squares Means

Standard

Effect treat week _treat _week Estimate Error DF t Value Pr > |t|

week*treat Control 1 Thiourac 1 -0.01403 0.04320 96 -0.32 0.7461

week*treat Control 1 Thyroxin 1 -0.03199 0.04761 96 -0.67 0.5032

week*treat Control 1 Control 2 -0.3719 0.01655 96 -22.47 <.0001

week*treat Control 1 Thiourac 2 -0.3452 0.04320 96 -7.99 <.0001

. . . . . . . . . .

. . . . . . . . . .

week*treat Control 2 Thiourac 2 0.02669 0.04320 96 0.62 0.5382

week*treat Control 2 Thyroxin 2 0.03043 0.04761 96 0.64 0.5242

. . . . . . . . . .

. . . . . . . . . .

week*treat Control 5 Thiourac 5 0.2570 0.04320 96 5.95 <.0001

week*treat Control 5 Thyroxin 5 -0.01035 0.04761 96 -0.22 0.8283

week*treat Thiourac 5 Thyroxin 5 -0.2673 0.04761 96 -5.61 <.0001

Recall that is always problematic to make such an awful lot of pairwise comparisons. One ought to
adjust the p-values, taking into account that we are making numerous tests. One such adjustment is the
Tukey adjustment. Tukey adjusted p-values are obtained in SAS by the option adjust = Tukey in the
lsmeans-statement. However, we use only a few of the p-values so the problem is not quite as big as it
may seem at first sight, and in fact it would not change our conclusions in the present case.
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Chapter 6

Models for binary response data

The main purpose of the present chapter is to introduce the class of logistic regression models. We leave
the framework of the previous chapters where a common feature of all models has been the assumption
that the response variable is continuous and normally distributed. The logistic regression models have
been developped in order to model data from experiments where the output is binary (dead/alive, no/
yes, 0/1, etc.).

The distribution of a binary random variable, Y, is entirely described by the probability of success

P(Y = 1) = p.

This distribution is often referred to as the binomial distribution with parameters (1, p) or the Bernouilli
distribution with parameter p. The basic assumption throughout this chapter is that our dataset consists
of independent binary random variables Y1, Y2, . . . , YN . If we denote by pi the probability P(Yi = 1) of
success for the i’th variable then finding a suitable statistical model for the data amounts to describing
the probabilities pi. As each response Yi is typically associated with a number of explanatory variables
(sex, treatment group, age, dose, etc.) the goal of the statistical analysis is to understand how those affect
the probability pi of success.

6.1 Tables of counts

Example 6.1 Exploring the effect of watering and light conditions on germination.

Let us consider a dataset from a growth experiment with 72 pots. 12 pots are associated with each
combination of the factors water with levels little, moderate, much and light with levels 8 hours

and 12 hours. After a fixed amount of time we observe the response, germination, that takes one
of the values yes or no. The full dataset contains 72 datalines (one for each put) summarizing the
joint configuration of the three variables water, light, and germination. However, it is usually more
convenient to report the results of such an experiment in a tabular as given below.

little moderate much
8 hours 12 hours 8 hours 12 hours 8 hours 12 hours

yes 3 5 6 8 4 0
no 9 7 6 4 8 12

95
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Here we have counted the number of observations for each combination of water, light, and germination.
A table of this form is referred to as a contingency table.

If we want to test if germinationdepends on the level of watering one may consider the tabular obtained
by aggregating the full tabular above over the levels of the factor light.

little moderate much total
yes Y11 = 8 Y12 = 14 Y13 = 4 Y1. = 26
no Y21 = 16 Y22 = 10 Y23 = 20 Y2. = 46

total Y.1 = 24 Y.2 = 24 Y.3 = 24 n = 72

The probability of observing germination in a pot that received little watering is estimated to

8

24
= 0.33,

whereas the estimates for watering levels moderateand much become 0.58 and 0.17. To determine whether
the estimates are significantly different we need a statistical model.

Let us denote by Y11, Y12, and Y13 the number of pots with germination for the three different water-
ing levels. Since it is reasonable to believe that the outcome in different pots do not influence each other
we assume that the variables are independent and binomially distributed

Y1j ∼ b(nj, pj), j = 1, 2, 3.

Here we have that n1, n2, n3 = 24 as there are 24 pots receiving either dose of water. The hypothesis of
homogeneity of the occurence of germination in the groups given by the watering level may be formu-
lated as H0 : p1 = p2 = p3.

A test of H0 can be based on the Pearson χ2−statistic informally defined by

χ2 = ∑
(observed − expected)2

expected
,

measurering the difference between the expected counts in the cells under H0 and the observed counts
summed over all cells in the tabular above. The Pearson test statistic for H0 turns out to be 9.1505 which
is far beyond the 95%-quantile of a χ2(2)−distribution. We may also use the likelihood ratio test statistic
given by

G2 = 2
2

∑
i=1

3

∑
j=1

Yij log

(
Yijn

Y·jYi·

)
,

where n = 72 is the total number of pots. One finds that

G2 = 9.4030 ∼ χ2(2)

and since the 95%-quantile of a χ2(2)−distribution is 5.991 we reject the hypothesis H0. We conclude
that the watering level does influence the germination in the pots.

But how do we quantify the effect of using moderate amount of water instead of little water? As an
answer to this question it is customary to report the odds ratio defined by

OR =
p2

1 − p2
/

p1

1 − p1
.
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If we plug in the estimates p̂1 and p̂2 we obtain the following estimate

ÔR =
0.5833

1 − 0.5833
/

0.3333

1 − 0.3333
= 2.8,

hence the odds for germination increases by a factor 2.8 if we increase the watering level from little

to moderate. �

We may repeat the analysis of the growth experiment to examine the effect of light but clearly it would
be more desirable to consider a model that takes both of the variables water and light into account.
One possible way to do so would be to consider the combination of water and light as a factor on
six levels and test for equal germination probability between the groups. This results in a Pearson test
statistic of G2 = 13.485 yielding af p-value of p = 0.019 in a χ2(5)-distribution. However, the statistical
analysis should reflect the type of questions we would like to answer. In this experiment we might like
to answer questions of the form: “Is the effect of changing the watering level from little to moderate

the same across all levels of light?” If the experiment contains more than two explanatory factors the
complexity of the questions we might like to answer increases even further and clearly a more flexible
class of statistical models is needed.

Section 6.2 and 7.3 present classes of models that allow us to analyze tables of counts grouped according
to several factors. One important feature of the models is that it is easy to quantify the effect of individual
variables in the model in terms of odds ratios.

6.1.1 R-programs and output

Example 6.1 (continued)

Read in data

When reading data into R remember to use attach so that we may refer to variables of data using the
variable names light, water, germination, and count.

> data=read.table(file="Growth.txt",header=T)

> attach(data)

> data

light water germination count

1 8 low yes 3

2 8 low no 9

3 8 mod yes 6

4 8 mod no 6

5 8 high yes 4

6 8 high no 8

7 12 low yes 5

8 12 low no 7

9 12 mod yes 8

10 12 mod no 4

11 12 high yes 0

12 12 high no 12

To produce a two-by-two table of the data cross-classified after germination and water write

> observed=xtabs(count~water+germination)
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> observed

germination

water no yes

high 20 4

low 16 8

mod 10 14

Test for effect of watering level

The program line

> chisq.test(observed)

Pearson’s Chi-squared test

data: data.water

X-squared = 9.1505, df = 2, p-value = 0.01030

calculates the Pearson χ2 test statistic and the corresponding p-value for a test of no effect of water. The
likelihood ratio test may be constructed using the code

> expected=outer(rowSums(observed),colSums(observed))/sum(observed)

>

> lr=-2*sum(observed*log(expected/observed))

> lr

[1] 9.402998

>

> pchisq(lr,2,lower=FALSE)

[1] 0.009081654

Here rowSums and colSums are the vector of row and column counts, and the matrix expected con-
tains the expected cell frequencies of the table of count under the hypothesis, H0, of equal germination
frequency for each watering level. The following program line computes minus two times the log like-
lihood ratio for H0 against the full model. Note that the likelihood ratio, lr, is obtained automatically if
the test is performed using glm as described in section 6.2.1. Finally, the p-value for the likelihood ratio
test is calculated in a χ2-distribution with 2 degrees of freedom.

6.1.2 SAS-programs and output

Example 6.1 (continued)

Read in data

The SAS program below reads and prints the data for the growth experiment.

data growth;

input light $ water $ germination $ count;

cards;

8 low yes 3
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8 low no 9

8 mod yes 6

8 mod no 6

8 high yes 4

8 high no 8

12 low yes 5

12 low no 7

12 mod yes 8

12 mod no 4

12 high yes 0

12 high no 12

;

run;

proc print;

run;

Test for effect of watering level

proc freq produces tables of counts and tests for the effect of watering.

proc freq;

weight count;

tables water*germination/chisq;

run;

Note that the chisq option in the tables statement implies that the Pearson χ2 test as well as the likeli-
hood ratio test statistic are printed as part of the output.

water germination

Frequency

Percent

Row Pct

Col Pct no yes Total

high 20 4 24

27.78 5.56 33.33

83.33 16.67

43.48 15.38

low 16 8 24

22.22 11.11 33.33

66.67 33.33

34.78 30.77

mod 10 14 24

13.89 19.44 33.33
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41.67 58.33

21.74 53.85

Total 46 26 72

63.89 36.11 100.00

Statistics for Table of water by germination

Statistic DF Value Prob

Chi-Square 2 9.1505 0.0103

Likelihood Ratio Chi-Square 2 9.4030 0.0091

Mantel-Haenszel Chi-Square 1 8.9047 0.0028

Phi Coefficient 0.3565

Contingency Coefficient 0.3358

Cramer’s V 0.3565
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6.2 Logistic regression models

In the present section we introduce a class of statistical models suitable for datasets with a binary re-
sponse variable (no/yes, 0/1, etc.). As an example let us for a while return to the growth experiment
discussed in section 6.1 and let us recode the response so that 1 means germination and 0 means no
germination. We want to build a joint statistical model that allows us to simulatneously quantify the
effect of water and light. Before proceeding we reorganize the data into a tabular as given below.

water light Group size No. of positives
little 8 hours 12 Y1 = 3
little 12 hours 12 Y2 = 5

moderate 8 hours 12 Y3 = 6
moderate 12 hours 12 Y4 = 8

much 8 hours 12 Y5 = 4
much 12 hours 12 Y6 = 0

The entries of last column are labelled Y1, . . . , Y6 and we replicate the notation for factors from the pre-
vious chapters, so that water3 denotes the level of the watering factor for Y3 which here takes the value
moderate. The number of observations in each group is denoted n1, . . . , n6, which are all = 12 in this
case. We assume that each variable Yi follows a binomial distribution

Yi ∼ b(ni, pi), i = 1, . . . , 6,

and that they are mutually independent. Under this model the estimate for pi is simply the frequency
of positive responses in group i so that for instance

p̂3 =
6

12
= 0.50.

We can think of this as a model with interaction between the factors water and light. In the logistic
regression model for no interaction (but possibly main effects) of water and light we assume that

log

(
pi

1 − pi

)
= α(wateri) + β(lighti), i = 1, . . . , 6. (6.1)

It may seem ackward that we model the logarithm of the odds ηi = log(pi/(1 − pi)) on the left hand
side instead of just pi. The reason is that the p′is have to be numbers between zero and one. Rearranging
the terms of (6.1) we find that

pi =
exp ((α(wateri) + β(lighti))

1 + exp ((α(wateri) + β(lighti))
,

which belongs to the interval (0, 1) no matter the values of α(wateri) and β(lighti). This would not
have been the case had we written pi = α(wateri) + β(lighti) which might at first sight seem more
natural. In terms of log-odds the model with interaction we also be written as

log

(
pi

1 − pi

)
= γ(wateri, lighti), i = 1, . . . , 6 (6.2)

Note the difference between the two models: in (6.2) the 6 p′is are allowed to take any values between 0
and 1 whereas in (6.1) the p′is are forced to satisfy a certain relationship.
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Example 6.1 (continued) Let us try to test the hypothesis (6.1) of no interaction between water and
light in growth experiment. The R- and SAS-programs in section 6.2.1 and 6.2.2 explain in details how
to read in data, fit a logistic model and perform the test for the data of the growth experiment introduced
in example 6.1.

A test of the model with no interaction against the full model introduced in section 6.1 yields a test
statistic of G2 = 7.7960 ∼ χ2(1) correpsonding to a p-value of approximately 2%. Though this makes us
reject the model (6.1) with additive effect of water and light lets us discuss for a while how to interpret
the parameter estimates of this model. From the output of section 6.2.1 and 6.2.2 we find

Parameter Estimate 95%-conf. int.
α(little) -0.6931 [-1.7416,0.2727]

α(moderate) 0.3365 [-0.6188,1.3306]
α(much) -1.609 [-2.9489,-0.5158]

β(12hours) − β(8hours) 0.000 [-1.0379,1.0379].

Note that the model (6.1) is overparameterized implying that one parameter, β(8hours), is used as
reference. From the tabular we may read off the estimate for the group given by water=moderate and
light=12 hours which turns out to be

log

(
p̂4

1 − p̂4

)
= 0.3365 + 0 = 0.3365.

This implies that p̂4 = 0.583 which is exactly the same as for the model of section 6.1 where we decided
to ignore light. We stress that as we reject the hypothesis of no interaction we do not trust the estimate
given above, but the example shows that if we insist on using a wrong model the estimate β(12hours)−
β(8hours) for the effect of light is zero.

It is instructive to consider how there can be an effect of the combination of water and light when there
is no marginal effect of light under the additive model. Inspecting the table of counts reveals what is
going on. For little and moderate watering level there appears to be a positive effect of increasing
the amout of light from 8 hours to 12 hours. In contrast, for pots exposed to much water there seems
to be a negative effect of increasing light. The fact that changing the light conditions does not have
the same effect for different levels of water is exactly what must be described by an interaction term
water×light. �

So far we have considered a logistic regression model with two factors but it could of course be extended
to include also continuous variables. The example below discusses how to do a logistic regression anal-
ysis wiht both a factor and a continuous explanatory variable. However, we remind that the use of
logistic regression models still requires a binary response.

Example 6.2 Effect of insecticide on moth.

Different groups of moths consisting of 20 males and 20 females have been exposed to the insecticide
trans-cypermethrin. After three days the number of moths that have died or collapsed has been observed.
The data is summarized in the tabular below.

Dose (µg)
Sex 1 2 4 8 16 32

Male 1 4 9 13 18 20
Female 0 2 6 10 12 16

If we introduce the variables

Yi =

{
1 if i-th moth has died or collapsed
0 otherwise,
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then as before we assume that
Yi ∼ b(1, pi),

and that they are independent. Here pi denotes the probability that the i−th moth collapses or dies
within three days. We want to use a statistical model that allows the probability, pi, to depend on the
factor sex and the covariate dose. One such model is given by

log

(
pi

1 − pi

)
= α(sexi) + β(sexi) log(dosei), (6.3)

where sexi and dosei are the sex and the dose corresponding to the i−th moth. The model expresses
that for each sex the logit of pi depends linearly on the logarithm of the dose of insecticide.

To understand the model it is a good idea to make the following plot.
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For each combination of sex and dose we count the number of moths and calculates the estimated
probability of dying or collapsing within that group by dividing by the group size of 20. For dose=2 and
sex=Female we get the frequency p̂ = 2/20 = 0.1. We then plot

log

(
p̂

1 − p̂

)

against the logarithm of the dose, i.e. log(2), using a different plotting symbol for each level of sex. The
logistic model (6.3) expresses that the points corresponding to same sex must fall around a straight line.
The lines on the plot are based on (6.3). From the output of section 6.2.1 and 6.2.2 the slope of the lines
corresponding to male and female moths are found to be

β̂(Male) = 1.8163

β̂(Female) = 1.8163− 0.5091 = 1.3072
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and the intersections with the y-axis are

α̂(Male) = −2.8186

α̂(Male) = −2.8186− 0.1750 = −2.9936.

A test for reduction of the full model with no restrictions on the 12 probabilities to the logistic model
(6.3)is accepted as we get that

G2 = 4.9937 ∼ χ2(8)

corresponding to a p-value of 76%.

We continue to test the hypothesis H0 : α(Male) = α(Female) about the intersection of the lines with
the y-axis being equal for both levels of sex. The model may formally be written as

log

(
pi

1 − pi

)
= α + β(sexi) log(dosei) (6.4)

and the test statistic for the hypothesis is

G2 = 0.0505 ∼ χ2(1)

yielding a p-value of 82%. We therefore accept the model given by (6.4) and further analysis shows that
it can not be reduced anymore. In particular the slope is not the same for the two sexes (G2 = 11.940,
p = 0.0005). Parameter estimates as well as confidence intervals for the model (6.4) become

α̂ = -2.9073 [-3.7247,-2.1917],

β̂(Male) = 1.8601 [1.4220,2.3708],

β̂(Female) − β̂(Male) = -0.5872 [-0.9572,-02474].

There may be minor differences in the 95%-confidence intervals obtained by R and SAS as they use
slightly different approximations. Those reported above have been taken from the R-output. But how
do we use the estimates above to quantify the effect of the insecticide? Suppose for instance that we
want to estimate the effect of doubling the dosis from dose= 1 to dose= 2. The corresponding increase
of the log-odds for a male moth is estimated to

(α̂ + β̂(Male) log(2))− (α̂ + β̂(Male) log(1)) = β̂(Male) log(2/1) = 1.29

with a confidence interval given by log(2) ∗ [1.4220, 2.3708] = [0.99, 1.64]. (What is the increase of log-
odds for Male moths when dose increases from 2 to 4?)

It may also be of interest to predict the outcome for a particular value of the covariate dose. In the moth
example the log-odds that a female moth receiving a dose= 10 dies or collapses within three days is
estimated to

log

(
p̂

1 − p̂

)
= α̂ + β̂(Female) log(10) = −2.9073 + (1.8601 + (−0.5872)) log(10) = 0.0236

implying that

p̂ =
exp(0.0236)

1 + exp(0.0236)
= 0.506.

A 95 %-confidence interval for the estimated probability becomes [0.394, 0.618] which may be calculated
using either SAS or R. �
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As discussed in the introduction of the chapter a statistical model for binary response data is equiv-
alent to a description of how the probability of success depends on explanatory variables. For a logistic
regression model we have so far used the logit link function

logit(p) = log

(
p

1 − p

)

and the idea has been to model logit(pi) as a linear function of factors and covariates associated to
the i−th observation. It is straight forward to include more than two factors/covariates and as in the
example 6.2 it may be preferable to transform some of the covariates. For an experiment with factors A
and B and a covariate C another example could be

logit(pi) = α(Ai, Bi) + β(Ai)
√
Ci.

Yet another modification that is often encountered in the literature is to use other link functions than
’logit’ on the left hand side of the model equation.
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Two such examples are the probit (Ψ−1) function (inverse cumulative density function for a N(0, 1)-
distribution and the cloglog function as displayed in the figure above. Both R and SAS allow for differ-
ent choices of ’links’, c.f. section 6.2.1 and 6.2.2.

6.2.1 R-programs and output

Example 6.1 (continued)

For a description of the dataset we refer to the program of section 6.1.1.

Fit logistic regression model

Before analysing the data we change the status of light to a factor. Logistic regression models are
fitted using the glm function. Note that when the response variable (germination) is not coded as 0/
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1 R automatically uses the value in the first dataline as response group ’1’. Thus, for this example
germination = yes is interpreted as the outcome ’1’, c.f. section 6.1.1.

When using glm one must remember to specify the family option (here binomial) to indicate which dis-
tribution is to be used for the response. When using the binomial family R uses the logit link function
as the default. To use other link functions write binomial(link=’’cloglog’’)or binomial(link=’’probit’’)
instead of just binomial.

> light=factor(light)

> glm0=glm(germination~water*light,weights=count,binomial)

> glm.add=glm(germination~water+light-1,weights=count,binomial)

glm0 is the model allowing for individual probabilities of positive response for each combination of
water and light. The glm.add model is the logistic regression model with main effects of water and
light. The ’water+light-1’ in the call of glm implies that the first level of the factor light will be used
as reference for the parameter estimates.

To obtain estimates for the parameters and 95%-confidence intervals under the model glm.add write

> summary(glm.add)

Call:

glm(formula = germination ~ water + light - 1, family = binomial,

weights = count)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

waterhigh -1.609e+00 6.074e-01 -2.650 0.00806 **

waterlow -6.931e-01 5.064e-01 -1.369 0.17109

watermod 3.365e-01 4.903e-01 0.686 0.49255

light12 2.967e-14 5.252e-01 5.65e-14 1.00000

> confint(glm.add,level=0.95)

2.5 % 97.5 %

waterhigh -2.9488934 -0.5158302

waterlow -1.7415677 0.2727403

watermod -0.6188004 1.3306372

light12 -1.0378636 1.0378636

Note that the estimate for the difference between the groups given by light is zero.

Testing the logistic regression model.

To test the logistic regression model against the full model use the program line

> anova(glm.add,glm0,test="Chisq")

that generates the output

Analysis of Deviance Table



6.2. LOGISTIC REGRESSION MODELS 107

Model 1: germination ~ water + light - 1

Model 2: germination ~ water * light

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 7 84.781

2 5 76.985 2 7.796 0.020

From the tabular we read off the test statistic (7.7960) and the p-value (0.0203) for the test.

Example 6.2 (continued)

Read in data

> data=matrix(nrow=12,ncol=2)

> data[,1]=c(1,4,9,13,18,20,0,2,6,10,12,16)

> data[,2]=20-data[,1]

> sex=gl(2,6,labels=c("Male","Female"))

> dose=c(1,2,4,8,16,32,1,2,4,8,16,32)

> logdose=log(dose)

Data are read in and stored in object data. The first column contains the number of moths that collapsed
or died within 3 days and the second column is the number of moths still alive. When using glm to fit
a logistic regression model one is allowed to enter the response data as a two column matrix with the
columns denoting positive/negative responses.

Variables sex and dose are created. The variable logdose is the covariate obtained by taking the loga-
rithm of the dose. Note that R considers dose as a covariate and that we have to specify explicitly when
it has to be regarded as a factor (grouping variable).

Fit logistic regression models.

> glm0=glm(data~sex*factor(dose),family=binomial)

> glm.linear=glm(data~sex*logdose,family=binomial)

> glm.parallel=glm(data~sex+logdose,family=binomial)

> glm.intersect=glm(data~sex*logdose-sex,family=binomial)

> glm.dose=glm(data~logdose,family=binomial)

The full model (glm0) assigns individual frequencies of positive response to all 12 combinations of sex
and dose. glm.linear is the logistic model where logit(pi) is modelled as a linear function of logdose
and different lines are fitted for Male and Female moths. The plot in example 6.2 may be generated from
the code

> freq=fitted(glm0)

> logitfreq=log(freq/(1-freq))

> plot(logdose,logitfreq,pch=as.numeric(sex),ylim=c(-3,3),

main="Moth exposed to trans-cypermethrin",ylab="Logit(p)",xlab="log(dose)")

> ylab="Logit(p)",xlab="log(dose)")

> legend(0,3,c("Male","Female"),pch=1:2)

> dev.print(device=pdf,file="ExMoth.ps")
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The vector logitfreq contains the values of

log

(
p̂i

1 − p̂i

)

for the model glm0. The last program line tells R to save the currect plot in a pdf-file. Lines correspond-
ing to the fit of the glm.linear object may be added to the plot using the following code.

freql=fitted(glm.linear)

lines(logdose[1:6],log(freql/(1-freql))[1:6])

lines(logdose[7:12],log(freql/(1-freql))[7:12])

Testing and obtaining relevant estimates.

To test for the logistic regression model and obtain estimates for the parameters use the program below.

> summary(glm.linear)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.8186 0.5480 -5.143 2.70e-07 ***

sexFemale -0.1750 0.7783 -0.225 0.822

logdose 1.8163 0.3059 5.937 2.91e-09 ***

sexFemale:logdose -0.5091 0.3895 -1.307 0.191

> anova(glm.linear,glm0,test="Chisq")

Analysis of Deviance Table

Model 1: data ~ sex * logdose

Model 2: data ~ sex * factor(dose)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 8 4.9937

2 0 5.239e-10 8 4.9937 0.7582

Succesive tests for same intersection of the regression line for Male and Female and for no effect of sex
at all is given by

> anova(glm.intersect,glm.linear,test="Chisq")

Analysis of Deviance Table

Model 1: data ~ sex * logdose - sex

Model 2: data ~ sex * logdose

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 9 5.0443

2 8 4.9937 1 0.0505 0.8221

> anova(glm.dose,glm.intersect,test="Chisq")

Analysis of Deviance Table
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Model 1: data ~ logdose

Model 2: data ~ sex * logdose - sex

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 10 16.9840

2 9 5.0443 1 11.9398 0.0005

Our final model is glm.intersect and parameter estimates are given by

> summary(glm.intersect)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.9073 0.3893 -7.468 8.12e-14 ***

logdose 1.8601 0.2408 7.723 1.13e-14 ***

sexFemale:logdose -0.5872 0.1799 -3.264 0.0011 **

A statement of the form

> confint(glm.intersect,level=0.95)

generates confidence intervals for the parameters of the model given by the object glm.intersect.

To predict the probability that a female moth receiving dose= 10 survives more than three days one has
to understand the parameterization used by R. The final model glm.intersect contains three parame-
ters α, β(male), and β(female) but the estimates from the output of R

> coef(glm.intersect)

(Intercept) logdose sexFemale:logdose

-2.9072994 1.8601238 -0.5871858

corresponds to α, β(male), and β(female) − β(male). The estimate we are looking for may therefore be
found by evaluating

1 · (−2.9073) + log(10) · 1.8601 + log(10) · (−0.5872)

and then transforming this quantity from the log-odds scale to a probability. A convenient way to obtain
the estimate and a confidence interval is to run the following program lines

> dose10=c(1,log(10),log(10))

> param=rbind(dose10)

> library(gmodels)

> est=estimable(glm.intersect,param,conf.int=0.95)

> est

Estimate Std. Error X^2 value DF Pr(>|X^2|) Lower.CI Upper.CI

dose10 0.02374847 0.2327583 0.01041024 1 0.9187324 -0.4380374 0.4855344

Here dose10 is the vector of coefficents used to obtain the relevant estimate from the original parameter
estimates in the model object glm.intersect. The function estimable from the package gmodels calcu-
lates the estimate and 95%-confidence interval corresponding to the vector dose10. All results are given
on the log-odds scale. To translate the estimates on the log-odds scale to probabilities finally use the
program below that defines the inverse logit function, invlogit, and evaluates the desired probability
and limits for a 95 % confidence interval.
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> invlogit=function(u){exp(u)/(1+exp(u))}

> pred=invlogit(est$Estimate)

> predlow=invlogit(est$Lower.CI)

> predup=invlogit(est$Upper.CI)

> print(c(predlow,pred,predup))

[1] 0.3922087 0.5059368 0.6190539

6.2.2 SAS-programs and output

Logistic regression models may be fitted using the GENMOD procedure in SAS.

Example 6.1 (continued)

For a description of the dataset we refer to the program of section 6.1.2.

Fit logistic regression model

To fit a logistic regression model with interaction between light and water use the program

proc genmod data=growth;

class light water;

weight count;

model germination=light water light*water/dist=binomial link=logit type3;

run;

The model statement expresses that the variable germination should be modelled as a logistic regression
model (dist=binomial) with logit as link function and that countdescribes the number of pots for each
combination of the variables light, water, and germination.

LR Statistics For Type 3 Analysis

Chi-

Source DF Square Pr > ChiSq

light 1 1.53 0.2157

water 2 12.78 0.0017

light*water 2 7.80 0.0203

The output shows that the interaction can not be removed (p-value: 2%).

Estimates and confidence intervals

Below we fit the logistic regression model without the interaction term.

proc genmod data=growth;

class light water;

weight count;

model germination=water light/noint dist=binomial link=logit type3 lrci;
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run;

[The following displays a part of the output]

Analysis Of Parameter Estimates

Standard Likelihood Ratio 95 Chi-

Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 0 0.0000 0.0000 0.0000 0.0000 . .

water high 1 1.6094 0.6074 0.5156 2.9488 7.02 0.0081

water low 1 0.6931 0.5064 -0.2727 1.7413 1.87 0.1711

water mod 1 -0.3365 0.4903 -1.3304 0.6188 0.47 0.4926

light 12 1 -0.0000 0.5252 -1.0378 1.0378 0.00 1.0000

light 8 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000

The noint option of the model statement ensures that one parameter is fitted for each level of water
and one parameter for the difference β(light8) − β(light12). Note that the estimates for the effects of
water is given for the reference group given by light = 12. Therefore the estimates given in Example
6.1 in section 6.2 have opposite signs. The lrci option of the model statement forces SAS to print the
likelihood ratio based confidence limits for the parameters.

Example 6.2 (continued)

Read in data

The following program reads in the dataset of example 6.2. The third column (n) is the total number of
moths in each dose group and the last column is the number of dead/collapsed moths with three days.
A new variable logdose is constructed.

data moth;

input dose sex $ n a;

logdose=log(dose);

cards;

1 m 20 1

1 f 20 0

2 m 20 4

2 f 20 2

4 m 20 9

4 f 20 6

8 m 20 13

8 f 20 10

16 m 20 18

16 f 20 12

32 m 20 20

32 f 20 16

;

run;

proc print data=moth;

run;



112 CHAPTER 6. MODELS FOR BINARY RESPONSE DATA

Fit logistic regression models and test for reduction.

To fit the full logistic regression model where sex is used as a factor and logdose as a covariate use the
following program.

proc genmod data=moth;

class sex;

model a/n=sex logdose sex*logdose/noint dist=binomial link=logit lrci type3;

run;

It is important to specify the family option dist=binomial indicating that the response is binary and
follows a binomial distribution. In exercise 9.4 you are supposed to try to use other link functions than
the logit function. Part of the output is displayed below.

The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 8 4.9937 0.6242

Scaled Deviance 8 4.9937 0.6242

Pearson Chi-Square 8 3.5047 0.4381

Scaled Pearson X2 8 3.5047 0.4381

Log Likelihood -105.7388

Analysis Of Parameter Estimates

Standard Likelihood Ratio 95% Chi-

Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 0 0.0000 0.0000 0.0000 0.0000 . .

sex f 1 -2.9935 0.5527 -4.1865 -2.0017 29.34 <.0001

sex m 1 -2.8186 0.5480 -4.0054 -1.8360 26.46 <.0001

logdose 1 1.8163 0.3059 1.2740 2.4860 35.24 <.0001

logdose*sex f 1 -0.5091 0.3895 -1.3077 0.2399 1.71 0.1912

logdose*sex m 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000

LR Statistics For Type 3 Analysis

Chi-

Source DF Square Pr > ChiSq

sex 1 0.05 0.8221

logdose 1 112.73 <.0001

logdose*sex 1 1.76 0.1842

The results of the test of the logistic model against the full model is given by the line beginning with
Deviance. The test statistic is 4.9937 and the test has 8 degrees of freedom. Remember that the test of
the logistic model only makes sense when multiple individuals are exposed to the same treatment (here
same combination of dose and sex).

When fitting the parameters of the logistic regression model SAS uses the group given by sex=Male as
reference for the slope parameter. Thus in the notation specified by (6.3) in example 6.2 the parameters
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from the SAS output are estimates of

α(Male) α(Female) β(Male) β(Female) − β(Male).

Finally, the output shows that the p-value for removing the effect of sex is 82 %. The model obtained
by removing sex from the model statement i SAS is given by (6.4) and expresses that the lines for Males
and Females intersect the y-axis at the same point while the slopes are allowed to be different.

Parameter estimates under the model with same intersection for Male and Female

To fit the model specified by (6.4) of example 6.2 and obtain relevant estimates one may write

proc genmod data=moth;

class sex;

model a/n=logdose sex*logdose/dist=binomial link=logit lrci;

estimate ’femaledose10’ int 1 logdose 2.302585 sex*logdose 2.302585/exp;

run;

The GENMOD Procedure

Analysis Of Parameter Estimates

Standard Likelihood Ratio 95% Chi-

Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 -2.9073 0.3893 -3.7245 -2.1916 55.78 <.0001

logdose 1 1.8601 0.2408 1.4219 2.3707 59.65 <.0001

logdose*sex f 1 -0.5872 0.1799 -0.9571 -0.2474 10.65 0.0011

logdose*sex m 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000

Contrast Estimate Results

Standard Chi-

Label Estimate Error Alpha Confidence Limits Square Pr > ChiSq

femaledose10 0.0237 0.2328 0.05 -0.4324 0.4799 0.01 0.9187

Exp(femaledose10) 1.0240 0.2384 0.05 0.6489 1.6160

Three parameters are estimated: common intercept, slope of Males, and difference between slope of
Females and Males. The lrci option of the model statement tells SAS to print 95%−confidence intervals
for the parameters.

The probability that a femalemoth receiving dose = 10 survives more than three days may be expressed
as

δ f ,10 = 1 · α + log(10) · β(male) + log(10) · (β(female) − β(male).

The estimate statement tells us that we want an estimate of 1 times the intercept, log(10) = 2.302585
times logdose (β(Male)), and log(10) = 2.302585 times logdose*sex (β(Female) − β(Male)). The exp

option of the estimate statement indicates that we want estimates for both log-odds and odds. An
estimate and a 95 %-confidence interval for δ f ,10 is then given as δ̂ f ,10 = 0.0237 [−0.4324, 0.4799]. Taking
the inverse logit function

invlogit : x → exp(x)

1 + exp(x)
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we may tranform the confidence interval from the log odds-scale to the scale of the response (probability
on (0, 1)) and we get p̂ = 0.506 with 95%-confidence interval [0.392, 0.619].
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6.3 Overdispersion in logistic regression models

Scientific experiments are carried out to determine which conditions (covariate) affect the outcome. In
the present framework our starting point for testing whether a given varible is important for the binary
response (0/1) has been to assume a logistic regression model for the frequency of getting outcome 1.
In the case where multiple individuals are subjected to exactly the same treatment we described how to
test the logistic regression model where the log-odds depends linearly on a covariate. We stressed that
this test was to be reported before examining the effect of other treatment factors.

It may happen that the test rejects the logistic regression model or that we are in a case where the logistic
regression model may not be tested. Does this mean that our experiment is of no value for exploring the
effect of the treament factor? In principle it implies that it is highly questionable and not recommendable
to trust the results of the logistic regression analysis concerning the effect of treament factors. However,
we present below two modifications of the model that may be used when the model assumptions of the
classical model are clearly not satisfied. The drawback of the two approaches is that it is not obvious
how to check the validity of the assumptions.

Before continuing with the mathematical details we present an example to illustrate what may be the
consequences of neglicting the fact that the logistic regression model does not describe the data. The
examples further discuss what may be the cause of deficiencies from the logistic regression model and
motivates the methods introduced in section 6.3.1 and 6.3.2.

Example 6.3 Occurence of weed.

The occurence of weed has been examined on several fields using the method proposed by Raunkiær.
The idea is to repeatedly throw a ring into the field at random and to count how many times the different
weed species occur within the area surrounded by the ring. The data for this example has kindly been
disposed by Christian Andreasen and is a small part of a huge experiment.

The data set discussed here stems from 68 fields and consists of the total number of rings that contains
Ager-stedmoderblomst. On each field the ring has been thrown a total number of 20 times. Related to each
observation we consider the factor crop with four levels and the two covariates pH and clay.
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Considering the plots above displaying our data it seems difficult to spot an effect of either of the ex-
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planatory variables. Let us try to fit the following logistic model to the data

log

(
pi

1 − pi

)
= α · pHi + β0(cropi) + β1(cropi) · clayi, (6.5)

where Yi ∼ b(20, pi) denotes the count on the i−th field and all 68 observations are assumed to be
independent. The p-values for removing either pH or the interaction crop×clay are indistinguisable
from zero.

The conclusion may appear surprising as the plots above are messy and do not clearly reveal a marginal
effect of clay, pH, or crop. The explanation for this is that the data are not well described by the model
(6.5). Note that we cannot test if the model is okay as in the previous examples because pH and clay take
different values (not set by the experimenter). We shall mention two possible reasons that (6.5) may be
inappropriate for the data.

The model (6.5) requires the counts Yi to be binomially distributed. This is reasonable only if there is
independence between individual counts on the same field. As we will see later in section 6.3.1 strong
(positive) correlation is likely to cause too much variation in the data compared to what can be explained
by the binomial distribution.

Another possible explanation for the strange results is that there could be huge differences between the
68 fields due to conditions that we have no chance to include in our model. In section 6.3.2 we discuss
how to include a random effect to take this possibility into account. �

6.3.1 Including an overdispersion parameter

Suppose that the experiment is carried out by collecting the experimental units (individuals) in k dif-
ferent groups. As our dataset we consider the variables Yi counting the number of times the outcome
1 turned up in each group. When we decide to describe the data using a logistic regression model we
assume that

Yi ∼ b(ni, pi), i = 1, . . . , k,

where ni denotes the number of individuals (or experimental units) in group i. This assumption is rea-
sonable in the case where the response of individuals in same group does not influence each other - in
statistical terms when outcomes associated with different individuals are independent.

One may often argue that the response for individuals in same group are more related than individuals
from different groups. This is likely to conflict with the assumption of the Y′

i s following a binomial
distribution. If we decide to parameterize the variance of Yi by

Var(Yi) = σ2ni pi(1 − pi)

then estimates of σ2 far from 1 indicates deviations from the binomial assumption since we know that

Var(Yi) = ni pi(1 − pi),

for Yi ∼ b(ni, pi). The parameter σ2 is denoted the overdispersion parameter.

The following example explains how to obtain an estimate of σ2 for a logistic regression model. It is
further illustrated how the estimate may be included in the analysis, so that is possible to test for the
effect of the explanatory variables when the binomial assumption does not hold. More formally:

• all parameter estimates are unchanged (compared to usual logistic regression)

• all s.e.’s are multiplied by σ̂

• all Wald test statistics are divided by σ̂2
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Example 6.3 (continued) For the weed example we now redo the statistical analysis where we allow
for overdispersion. Using (6.5) as our initial model for pi the overdispersion parameter is estimated to
σ̂2 = 10.5431. This is far from 1 indicating that the binomial assumption is not met. The corrected Wald
test for removing the interaction crop×clay becomes

55.12/10.5431 = 5.2281 ∼ χ2(3)

corresponding to a p-value of 16%. For succesive reduction of (6.5) it may be convenient to construct
table of the form (0 meaning the model with constant p for all observations).

Model effects Deviance Df σ̂2 G2 p-value
pH+ crop× clay - 59 10.5431 - -
pH+ crop+ clay 55.12 3 11.7081 5.2281 0.1558

crop+ clay 25.04 1 11.5956 2.1387 0.1436
clay 41.99 3 11.1160 3.6212 0.3054

0 152.21 1 11.7740 13.6929 2.153e-4

We end up with the model

log

(
pi

1 − pi

)
= β0 + β1 · clayi,

expressing that the occurence of weed only depends on the amount of clay in the soil. The parameter
estimates for the effect of clay together with 95 %-confidence intervals are given by

β̂0 = 1.7137 [0.8713,2.5561]

β̂1 = −0.1709 [-0.2694,-0.0724].

The confidence intervals are constructed simply by multiplying the lengths of the intervals obtained for

the model without overdispersion by a factor σ̂ =
√

11.116 = 3.334. �

It may be illuminating to examine the effect of the correction for overdispersion in a simple teoretical
example.

Example 6.4 Effect of correlation within groups

Suppose that we want to examine the effect of a pesticide by conducting a field experiment on 50 fields
of which 25 are treated with the pesticide while the remaining 25 are used as controls. By looking
at previous experiments we have selected two different weeds, A and B, that are both present with
probability 50% on a randomly chosen untreated field. As our data we count for each of the 50 fields how
many of the species A and B that are observed. Thus, our data consist of 50 observations, Yi, i = 1, . . . , 50,
each taking one of the values 0, 1, or 2.

To analyze the data we plan to use a logistic regression model where Yi ∼ b(2, pi) are independent and

log

(
pi

1 − pi

)
= α + β · xi,

where xi is 1 or 0 depending on whether the i−th field has been treated with the pesticide. If a test of
the hypothesis H0 : β = 0 is rejected we conclude that the pesticide influences the occurence of weed.
We decide to use a 5 % significance level for the test meaning that if there is no effect of the pesticide the
test will only yield the wrong result and detect an effect with probability 5%. We will say that the test
has level 0.05 (or 5%).
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If the assumptions for the logistic model are not satisfied the level of the test may be different from
5% even when there is no effect of the pesticide. For this particular example we assume that whether
weed A is observed on a field is independent of whether weed B is observed on the same field. This is
probably very unrealistic!

Below we present a simulation study that examines the level of the test when we simulate from a model
that allows for dependence between weed A and B but where there is no effect of the pesticide. Since
weed A and B both occur with probability 50 % we claim that the joint occurence of (A,B) must be
described as

Weed A Weed B probability
+ + p
+ - 1/2 − p
- + 1/2 − p
- - p

where p ∈ (0, 1/2). In particular Yi is not binomial and one can show (try!) that under this assumption

Var(Yi) = 2 · p.

Under the assumption of the logistic regression model - and no effect of the pesticide - we have that
Yi ∈ b(2, 1/2) so

Var(Yi) = 2 · 1/2 · (1 − 1/2) = 1/2

hence the overdispersion parameter becomes

σ2 =
2 · p

1/2
= 4p.

If Yi,A (respectively Yi,B) is 1 if weed A (respectively weed B) is observed on field i one finds that their
correlation is given by

ρ = Corr(Yi,A, Yi,B) = 4p − 1.

The correlation is often used to measure dependence between random variables and a correlation far
from zero (and close to −1 or 1) conflicts an assumption of independence.

For different values of the correlation 10.000 datasets were simulated from the distribution given by the
table above. For each of these the hypothesis of no pesticide effect was tested, both with and without
correction for overdispersion. The rejection frequency was then computed. The figure below displays
the level of the test for effect of the pesticide both with and without correction for overdispersion.
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The case ρ = 0 corresponds to independence between occurence of weed A and B. Here the assumptions
for the logistic regression model hold and the level of the corrected as well as the uncorrected test are
close to 5 % as desired. However, for ρ = 0.6 the power of the uncorrected test is 12.9 % implying that
the test would claim an effect of the pesticide in more that one out of eight experiments even when this
is not the case. We further observe, that if the test is corrected for overdispersion we obtain a test with
power close to 5 % almost no matter what is the correlation between the two types of weed. �

6.3.2 Random effects in logistic regression models

In the following section we present a more specific model that may be used when the logistic regression
model seems inappropriate. Think of the situation where there is a source of variation which is not im-
portant for the actual research question (the effect of treatments on the response), but which hinders the
analysis of these matters. The idea in to replicate the terminology from gaussian models with random
effects. Typical examples are experiments where individuals (persons/animals) are exposed to different
treatments and large differences between patients make it diffucult to detect the effect of the treatment.
The following example explains how to include a random effect in a logistic regression model.

Example 6.3 (continued) Let us try to fit the model given by (6.5) where we further allow for a random
field effect to account for differences between the fields. We introduce the variables Xi, i = 1, . . . , 20 · 68,
indicating the (binary) response (1/0) of individual throws with the ring. The model is formally specified
by assuming that Xi ∼ b(1, pi) with

log

(
pi

1 − pi

)
= α · pHi + β0(cropi) + β1(cropi) · clayi + γ(fieldi) (6.6)
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where γ(1), . . . , γ(68) ∼ N(0, σ2
F) are independent random variables. A table for successive reduction

of the systematic part of the model is given below. Note that for R we report the p-value based on the
likelihood ratio test and for SAS we give the p-value for the F-test.

Model effects p-value (R) p-value (SAS)
crop× clay 0.0911 0.1131
crop+ clay 0.0306 0.0601

clay 0.4228 0.4448
0 0.0001 < 0.0001

If we maintain a significance level of 5% we may not remove the interaction crop× clay since the p-
value of the F-test is only 3%. Let us for a while ignore this fact and consider the model

log

(
pi

1 − pi

)
= β0 + β1 · clayi + γ(fieldi) (6.7)

with common slope (wrt. clay) for all crops. The parameter estimates become

β̂0 = 2.8054

β̂1 = −0.2873

σ̂2
F = 7.287.

Comparing the estimates above with those obtained for the model with overdispersion in section 6.3.1
we note that there are clear differences. If we quantify the effect of clay by calculating the change of the
odds by increasing the level of clay by 1 we get

Model β̂1 exp(β̂1)
Overdispersion -0.1709 0.843

Random field effect -0.2873 0.750

Thus, depending on which model we decide to trust increasing clay by 1 reduces odds of observing
weed in the ring by either 16% or 25 %. The plots below help us visualizing the differences between the
two approches.
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The model in section 6.3.1 predicts the observations to fall on the dotted line, and uses the overdisper-
sion parameter to describe the variation around the line. The model including a random field effect
predicts the observations to be located on the dashed line, that is chosen so that the deviations of the
actual observations are normally distributed. It seems impossible to argue which model that must be
preferred to the other. However, remember that one difference between the models is that the interaction
crop×clay is actually significant in the random effect model. �

6.3.3 R-programs and output

Example 6.3 (continued)

Description of dataset

The data are read into R and stored as a data frame called data. The data frame includes the number of
rings, c3, containing the weed species 3,Ager-stedmoderblomst, the factor crop, and the covariates pH and
ler (=clay) measuring chemical properties of the soil. The total number of datalines are 68. Initially we
make a matrix, d3, with two columns collecting the number of positive and negative responses using
the following code

> d3=cbind(c3,20-c3)

Fit logistic regression models with overdispersion parameter

Logisitic regression models with overdispersion parameters are fitted using glm() with quasibinomial

as the family option.
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> glm1.over=glm(d3~pH+crop*ler,family=quasibinomial)

> glm2.over=glm(d3~ler+crop+pH,family=quasibinomial)

> glm3.over=glm(d3~ler+crop,family=quasibinomial)

> glm4.over=glm(d3~ler,family=quasibinomial)

> glm5.over=glm(d3~1,family=quasibinomial)

Parameter estimates for the model glm1.over are found by

> summary(glm1.over)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.76590 2.77286 -0.637 0.5267

pH 0.85540 0.49537 1.727 0.0894 .

cropRug -0.74618 1.31326 -0.568 0.5721

cropVinterbyg 0.42443 1.62203 0.262 0.7945

cropVinterraps -3.11336 1.45706 -2.137 0.0368 *

ler -0.28066 0.10876 -2.581 0.0124 *

cropRug:ler 0.03065 0.16483 0.186 0.8531

cropVinterbyg:ler -0.15660 0.19524 -0.802 0.4257

cropVinterraps:ler 0.22940 0.14190 1.617 0.1113

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for quasibinomial family taken to be 10.54309)

in particular we may read off the dispersion parameter (10.54309).

A test for the effect of crop×ler is produced by

> anova(glm2.over,glm1.over,test="Chisq")

Analysis of Deviance Table

Model 1: d3 ~ ler + crop + pH

Model 2: d3 ~ pH + crop * ler

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 62 749.89

2 59 694.77 3 55.12 0.16

and the tests for further reductions of the model are obtained by writing

> anova(glm3.over,glm2.over,test="Chisq")

> anova(glm4.over,glm3.over,test="Chisq")

> anova(glm5.over,glm4.over,test="Chisq")

Including a random field effect

Logistic regression models with random effects may be fitted using the lmer() function included in the
lme4 package. The first challenge is to get the data on a suitable form.

> block=rep(1:68,rep(20,68))
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> c3rand=c()

> for(i in 1:68){for(j in 1:2){if(d3[i,j]>0){c3rand=c(c3rand,rep(2-j,d3[i,j]))}}

> lerrand=rep(ler,rep(20,68))

> pHrand=rep(pH,rep(20,68))

> croprand=rep(crop,rep(20,68))

The R-script above produces a dataset with 68 · 20 data lines - one for each of the moths in the experiment.
The objects lerrand, pHrand,and croprand are vectors of length 68 · 20 containing the value of ler, pH,
and crop for individual rings in the experiment.

To fit the models and perform the tests reported in section 6.3.2 the following R-script may be used.

> library(lme4)

> glm1.b=lmer(c3rand~pHrand+croprand*lerrand+(1|block),family=binomial)

> glm2.b=lmer(c3rand~croprand*lerrand+(1|block),family=binomial)

> glm3.b=lmer(c3rand~croprand+lerrand+(1|block),family=binomial)

> glm4.b=lmer(c3rand~lerrand+(1|block),family=binomial)

> glm5.b=lmer(c3rand~1+(1|block),family=binomial)

> anova(glm5.b,glm4.b,glm3.b,glm2.b,glm1.b,test="Chisq")

Data:

Models:

glm5.b: c3rand ~ 1 + (1 | block)

glm4.b: c3rand ~ lerrand + (1 | block)

glm3.b: c3rand ~ croprand + lerrand + (1 | block)

glm2.b: c3rand ~ croprand * lerrand + (1 | block)

glm1.b: c3rand ~ pHrand + croprand * lerrand + (1 | block)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

glm5.b 2 1111.14 1121.57 -553.57

glm4.b 3 1098.12 1113.77 -546.06 15.0138 1 0.0001067 ***

glm3.b 6 1101.32 1132.61 -544.66 2.8039 3 0.4228618

glm2.b 9 1098.41 1145.35 -540.21 8.9027 3 0.0306130 *

glm1.b 10 1097.56 1149.71 -538.78 2.8535 1 0.0911725 .

Parameter estimates under the model given by (6.7) in section 6.3.2 can be found using

> summary(glm4.b)

Generalized linear mixed model fit using PQL

Formula: c3rand ~ lerrand + (1 | block)

Family: binomial(logit link)

Random effects:

Groups Name Variance Std.Dev.

block (Intercept) 7.287 2.6995

number of obs: 1360, groups: block, 68

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.80540 0.72713 3.8582 0.0001142 ***

lerrand -0.28728 0.08498 -3.3805 0.0007234 ***
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6.3.4 SAS-programs and output

Example 6.3 (continued)

Description of dataset

The data are read into SAS from the file ’WeedExChristianAndreasen.txt’ and stored as a dataset called
weed. The dataset contains a number of variables of which we shall only consider the number of rings,
c3, containing the weed species 3 (Ager-stedmoderblomst), the factor crop, and the covariates pH and ler

(=clay) measuring chemical properties of the soil. The total number of datalines are 68. When reading
in the data we add a variable total with the value 20 corresponding to the number of rings thrown at
each field.

data weed;

infile ’C:\WeedExChristianAndreasen.txt’ firstobs=15;

input crop $ c3 c7 c18 pH K Mg N C P ler silt grovsand finsand orgstof;

field=_N_;

total=20;

run;

Note that the entire path to the file should be specified, hence on your computer the line
’C:/WeedExChristianAndreasen.txt’must correspond to the subdirectory, where you have stored the
file with the dataset. The statement firstobs=15 tells SAS to ignore the first 14 lines of the file, since
these are only comments and not part of the dataset. The line field= N creates a new variable field

taking the values 1, . . . , 68 corresponding to the dataline number.

Fit logistic regression models with overdispersion parameter

To include an overdispersion parameter when fitting a logistic regression model use the pscale option
in the model statement of the PROC GENMOD.

proc genmod;

class crop;

model c3/total=pH crop ler crop*ler/dist=binomial link=logit type3 pscale;

run;

The program above fits the logistic model (6.5) and estimates an overdispersion parameter (σ̂2 = 3.2472 =
10.543). Part of the output is given below.

Parameter DF Estimate Error Limits Square Pr > ChiSq

ler*crop Vinterra 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 3.2470 0.0000 3.2470 3.2470

Source Num DF Den DF F Value Pr > F Square Pr > ChiSq

pH 1 59 3.05 0.0858 3.05 0.0806

crop 3 59 2.42 0.0750 7.26 0.0640

ler 1 59 16.14 0.0002 16.14 <.0001

ler*crop 3 59 1.74 0.1681 5.23 0.1558

The p-value for removing the interaction crop× ler is 0.1558.
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Successively reducing the fixed effects of the model we end up with the model containing only the
covariate ler. Parameter estimates with 95 %-confidence intervals are:

proc genmod;

class crop;

model c3/total=ler/dist=binomial link=logit type3 pscale;

run;

[Part of the output]

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 1.7137 0.4243 0.8820 2.5453 16.31 <.0001

ler 1 -0.1709 0.0495 -0.2678 -0.0739 11.93 0.0006

Scale 0 3.3341 0.0000 3.3341 3.3341

NOTE: The scale parameter was estimated by the square root of Pearson’s Chi-Square/DOF.

Chi-

Source Num DF Den DF F Value Pr > F Square Pr > ChiSq

ler 1 66 13.69 0.0004 13.69 0.0002

We find that the test statistic for removing the effect of ler is G2 = 13.69 ∼ χ2(1) (p-value: 0.02 %). The
dispersion parameter is estimated to σ̂ = 3.3341 and estimates for the two other parameters become

β̂0 = 1.7137 [0.8820, 2.5453]

β̂1 = −0.1709 [−0.2678,−0.0739].

Including a random field effect

Logistic regression models with random effects are fitted using the glimmix macro. The first challenge
is to get the data on a suitable form.

data weed2;

set weed;

v=1; do i=1 to c3; output; end;

v=0; do i=1 to total-c3; output; end;

keep field pH ler crop v;

proc print;

run;

The SAS-program above produces a dataset, weed2, with 68 · 20 datalines - one for each of the rings in
the experiment.

To fit the models and perform the tests reported in section 6.3.2 the following SAS-program may be
used.

%include "C:\glimmix.sas";

%glimmix(data=weed2,
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stmts=%str(class crop field;

model v=crop ler crop*ler pH/solution;

random field;),

error=binomial,

link=logit

)

Note that when calling the glimmix macro “C:\glimmix.sas” must refer to a subdirectory on your own
computer, where you have saved the program glimmix.sas (which may be downloaded from the course
homepage).



Chapter 7

Models for polytomous response data

A common feature of all the examples discussed in Chapter 7 is that the response data can be thought of
as being binary. However, all of the models have extensions to the case where the response takes values
in a set with J levels 1, . . . , J. In this case the outcome of the i−th experiment can be summarized into a
vector

Yi = (Yi1, Yi2, . . . , Yi J)

where exactly one of the coordinates is one and the others are zero. Yi will be assumed to follow a
multinomial distribution

Yi ∼ m(1, (pi1, . . . , pi J))

where pij is the probability that the i-th outcome is j. We further suppose that the Y′
i s are all independent.

Thus the models discussed below only differ in the way we decide to model the dependence of the
probability parameters

pi1, pi2, . . . , pi J

on factors and covariates associated with the i−th experiment.

In certain cases there is a natural ordering on the set of the categories for the response. An important
example of this kind occurs if the response is the result of a discretization procedure where a latent
continuous response variable is assigned to one of a number of different categories according to different
thresholds.

7.1 Tables of counts

If multiple individuals are associated with the same configuration of the explanatory variables the data
are usually summarized into a table of counts. The following table displays the result of an experiment
concerning the effect of spraying against eyespot (knækkefodssyge). Groups of approximately 50 plants
have been exposed to one of ten different treatments and after some time each plant has been judged on
a scale ranging from 1 to 4. The experiment has been repeated four times on different blocks. Note that
response category 1 corresponds to the plant being completely healthy, 4 to severe lesions on the whole
stem.

127
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Block
1 2 3 4

Judgment Judgment Judgment Judgment
Treatment 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 4 16 17 9 11 9 20 9 10 8 18 13 4 13 19 9
2 28 7 11 2 23 11 14 4 22 11 12 4 18 16 14 0
3 3 12 21 9 9 8 19 10 3 12 23 12 7 13 27 10
4 3 15 22 7 12 9 17 11 6 13 19 8 8 16 18 11
5 10 9 16 11 7 5 16 11 5 13 16 10 4 8 24 12
6 30 4 10 2 24 9 10 4 26 10 11 3 26 8 11 1
7 9 9 19 11 6 6 20 17 1 13 20 14 8 8 24 11
8 5 8 23 12 8 12 15 11 8 6 21 13 6 7 20 14
9 3 15 19 12 8 15 15 12 14 12 13 8 4 9 16 19

10 9 13 16 8 9 9 20 12 5 7 25 14 6 9 15 18

Example 7.1 Eyespot (Knækkefodssyge).

The variables of the experiment are denoted treatment, block, and judge. Suppose that we want to
examine the effect of treatment on the judgement of the plant and let us ignore the block factor. The
resulting data are summarized into the following table.

Judgement
Treatment 1 2 3 4 Total

1 29 46 74 40 189
2 91 45 51 10 197
3 22 45 90 41 198
4 29 53 76 37 195
5 26 35 72 44 177
6 106 31 42 10 189
7 24 36 83 53 196
8 27 33 79 50 189
9 29 51 63 51 194

10 29 38 76 52 195

We denote by
Yi = (Yi1, Yi2, Yi3, Yi4)

the number of plants in each response category for the i−th treatmentgroup and assume that Y1, . . . , Y10

are independent and follow a multinomial distribution

Yi ∼ m(ni, (pi1, . . . , pi4))

where ni is the total number of plants receiving treatment = i. The hypothesis of homogeneity between
treatment groups may be expressed as

H0 : p1j = p2j = . . . = p10j,

for all response categories j = 1, 2, 3, 4. The (likelihood ratio) test statistic of H0 against the unrestricted
model with individual probabilities for each treatment is G2 = 280.27 ∼ χ2(27) which is highly signif-
icant (p-value= 0%). The parameter estimates under the full model is simply the tabular of observed
frequencies corresponding to the table of counts presented above. �

The conclusion of our analysis above is that there are differences between the judgement of plants in
different treatment groups. There are, however, at least two problems with our model.
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Firstly, we ignore the block factor which may potentially affect the judgement of the plant and conse-
quently make it questionable to interpret the parameter estimates for treatment groups. As for the case
with binary response data it is not clear how to build a model where the response judge is allowed to
depend on both block and treatment. In section 7.2 we explain how the logistic regression model may
be extended to the case with multiple response categories.

Another problem with the analysis in example 7.1 is that it may be difficult to interpret differences be-
tween treatment groups. This is due to the fact that the model allows the effect of the treatment to vary
over different response categories. The proportional odds-model in section 7.3 explains how to build a
model where the effect of explanatory variables is described in a unified way over all response cate-
gories. This allows for a simple interpretation of the effect of factors and covariates in the experimental
design.

7.1.1 R-programs and output

Example 7.1 (continued)

Read in data

The data are read into R from an ASCII file organised as follows.

Treat Block A B C D

1 1 4 16 17 9

2 1 28 7 11 2

3 1 3 12 21 9

. .

. .

[more datalines here]

. .

. .

6 4 26 8 11 1

7 4 8 8 24 11

8 4 6 7 20 14

9 4 4 9 16 19

10 4 6 9 15 18

The columns with names A to D are the number of plants in each of the four judgement categories. The
data set is stored as a six column matrix labelled data.

Testing for effect of treatment

The program lines below construct a two-way table of counts (table1) by classifying the data according
to treatment and response group.

> table1=xtabs(data[,3:6]~Treat)

> table1

Treat A B C D

1 29 46 74 40

2 91 45 51 10
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3 22 45 90 41

4 29 53 76 37

5 26 35 72 44

6 106 31 42 10

7 24 36 83 53

8 27 33 79 50

9 29 51 63 51

10 29 38 76 52

> chisq.test(table1)

Pearson’s Chi-squared test

data: table1

X-squared = 301.586, df = 27, p-value < 2.2e-16

A Pearson χ2−test for homogeneity of the response distribution for different treatment groups is ob-
tained using the chisq.test() method exactly as described in section 7.1 where the response was bi-
nary.

A likelihood ratio test for the same hypothesis may be constructed using the multinom() method of the
nnet library.

> library(nnet)

> Tmod1=multinom(data[,3:6]~factor(Treat))

> Tmod2=multinom(data[,3:6]~1)

> anova(Tmod2,Tmod1)

Likelihood ratio tests of Multinomial Models

Model Resid. df Resid. Dev Test Df LR stat. Pr(Chi)

1 1 117 5188.982

2 factor(Treat) 90 4908.716 1 vs 2 27 280.2651 0

The multinom method is used to fit multinomial distributions with at least three different response
groups (for binary response use glm with family = binomial). The object Tmod1 contains a fit of a
multinomial model with individual parameters for each level of treatment whereas Tmod2 has fitted
one common set of parameters for all treatment levels.

7.1.2 SAS-programs and output

Example 7.1 (continued)

Read in data

The data are stored as a dataset knaekke in SAS so that each dataline contains the three variables Treat
(treatment), Block (block) and Judge (judgement group) and the corresponding number of counts.
The first six lines of knaekke looks like:

Obs Block Treat Judge count

1 1 1 A 4

2 1 1 B 16
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3 1 1 C 17

4 1 1 D 9

5 1 2 A 28

6 1 2 B 7

Testing for effect of treatment

Use proc freq to obtain test statistics for the hypothesis of the distribution on judgement groups being
the same for all levels of treatment.

proc freq;

weight count;

tables Judge*Treat/chisq;

run;

Statistics for Table of Judge by Treat

Statistic DF Value Prob

Chi-Square 27 301.5860 <.0001

Likelihood Ratio Chi-Square 27 280.2651 <.0001

Mantel-Haenszel Chi-Square 1 24.0571 <.0001

Phi Coefficient 0.3964

Contingency Coefficient 0.3685

Cramer’s V 0.2289

Note that the output contains the likelihood ratio test statistic as well as the Pearson χ2−test statistic.
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7.2 Multinomial logistic regression modela

We consider in this section a data set where the response is categorized into one of J different groups and
where each observation further contains recordings of a number of explanatory variables. The model
below is described using the terminology of the eyespot (knækkefodssyge) experiment introduced in
section 7.1 where we have four different response groups and two factors treatment and block. How-
ever, we stress that the model may include an arbitrary number of explanatory variables some of which
may be continuous covariates.

The full data set consists of 40 variables

Yi = (Yi1, Yi2, Yi3, Yi4),

counting the number of plants in each judgement group for each of the 40 combinations of the fac-
tors treatment and block. We assume that the Y′

i s are independent and that Yi follows a multinomial
distribution with probability parameter

pi = (pi1, pi2, pi3, pi4),

where the parameters must obey the constraint ∑j pij = 1. In the following the model will be referred to
as the full (polytomous) logistic regression model and we will use instead a parameterization given by
the log-odds

ηij = log

(
pij

pi1

)
j = 2, . . . , J − 1, (7.1)

wrt. some reference (baseline) category, here response group 1.

Example 7.1 (continued) The (polytomous) logistic regression model with no interaction between block

and treatment can be expressed as

log

(
pij

pi1

)
= α(treatmenti, j) + β(blocki, j), j = 2, 3, 4, i = 1, . . . , 40. (7.2)

The model expresses that for each response group the effect of the treatment and block factors enters
additively on the log-odds scale. Tedious computations show that

pij =
exp (α(treamenti, j) + β(blocki, j))

∑
4
j=1 exp (α(treamenti, j) + β(blocki, j))

j = 1, . . . 4,

where one should put α(treati, 1) = β(blocki, 1) = 0. Unfortunately, it is difficult to use this math-
ematical structure of the model to draw any interesting conclusions concerning the efffect of the two
factors treat and block.

For fixed levels of treat and block the parameter estimates corresponding to (7.2) may be interpreted
in the following way: the ratio between the frequency of a plant being placed into judgement group
judge= 4 or judge= 2, respectively, is given by

pi4

pi2
= exp (α(treati, 4)− α(treati, 2) + β(blocki, 4)− β(blocki, 2)) .

As submodels of (7.2) we may consider

log

(
pij

pi1

)
= α(treamenti, j) (7.3)

log

(
pij

pi1

)
= β(blocki, j) (7.4)
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with only a main effect of one of the two factors.

The likelihood ratio test of the model (7.2) with no interaction against the full model (7.1) yields a test
statistic of LR = 93.43 ∼ χ2(81) corresponding to a p-value of 16%. We further find that the block

factor may be removed (LR = 8.61 ∼ χ2(9), p-value = 47%) but that treatment has a significant effect
(LR = 280.27 ∼ χ2(27), p-value = 0%). Our final model is therefore given by (7.3). The parameter
estimates become

Response category
Effect 2 3 4

treatment = 1 0.4613462 0.9367278 0.3215106
treatment = 2 -0.7042333 -0.5790669 -2.2086934
treatment = 3 0.7157091 1.4088488 0.6225709
treatment = 4 0.6028764 0.9634392 0.2435296
treatment = 5 0.2968240 1.0181676 0.5256048
treatment = 6 -1.2292959 -0.9258565 -2.3604394
treatment = 7 0.4051431 1.2404833 0.7919260
treatment = 8 0.2010237 1.0738824 0.6165557
treatment = 9 0.5648464 0.7761404 0.5648464
treatment = 10 0.2701929 0.9632942 0.5839398

We have one set of parameters for each response category (expect for the reference group) and ten
different levels of treatment yielding a total of 10 · (4 − 1) = 30 parameters. For a plant recieving
treatment treat= 6 the ratio between the probabilities of being placed into judgement groups judge= 3
or judge= 1, respectively, is

pi3

pi1
= exp(−0.9259) = 0.396.

The probability of judge= 3 may be computed as

pi3 =
exp(−0.9259)

1 + exp(−1.2293) + exp(−0.9259) + exp(−2.3604)
= 0.222.

The statistical analysis takes into account both of the explanatory factors and we conclude that there is
only an effect of treatment. But does the analysis allows us to compare the effect of different treatments?
As the estimate for treatment = 6 is the lowest for all response categories we may probably say that
this treatment is the most efficient. However, it may be more difficult to compare treatment 4,5 and
9 since the ordering of their effects seems to depend strongly on which response category we decide
to consider. The fact that treatment effects must be evaluated separately for each response group is a
major drawback related to the use and in particular the interpretation of the logistic regression model
for polytomous response data. �

7.2.1 R-programs and output

Example 7.1 (continued)

Description of dataset

The data are read into R and stored as a data frame called data. The data frame contains two factors T
(treatment) and Bl (block) and four response variables A, B, C, and D containing the number of plants
in each of four response categories.
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> data

Treat Block A B C D

1 1 1 4 16 17 9

2 2 1 28 7 11 2

3 3 1 3 12 21 9

4 4 1 3 15 22 7

[more datalines here]

37 7 4 8 8 24 11

38 8 4 6 7 20 14

39 9 4 4 9 16 19

40 10 4 6 9 15 18

Logistic regression with polytomous response

Logistic regression models are fitted using multinom() in the nnet package. The response is arranged
as a matrix y with four columns containing the number of plants in each response category.

> library(nnet)

> y=cbind(A,B,C,D)

> mod.full<-multinom(y~Bl*T)

> mod.add<-multinom(y~Bl+T)

> mod.treat<-multinom(y~T)

> mod.block<-multinom(y~Bl)

> mod.1<-multinom(y~1)

The models may be tested against each other using the anova() method. A test for the effect of interac-
tion factor may look like

> anova(mod.add,mod.full,test="Chisq")

Likelihood ratio tests of Multinomial Models

Response: y

Model Resid. df Resid. Dev Test Df LR stat. Pr(Chi)

1 Bl + T 81 4900.106

2 Bl * T 0 4806.675 1 vs 2 81 93.43107 0.1629195

Parameter estimates

Parameter estimates for the final model (7.3) may be obtained by writing

> coef(mod.treat)

T1 T2 T3 T4

B 0.4613462 -0.7042333 0.7157091 0.6028764

C 0.9367278 -0.5790669 1.4088488 0.9634392

D 0.3215106 -2.2086934 0.6225709 0.2435296

T5 T6 T7 T8

B 0.2968240 -1.2292959 0.4051431 0.2010237

C 1.0181676 -0.9258565 1.2404833 1.0738824
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D 0.5256048 -2.3604394 0.7919260 0.6165557

T9 T10

B 0.5648464 0.2701929

C 0.7761404 0.9632942

D 0.5648464 0.5839398

7.2.2 SAS-programs and output

Example 7.1 (continued)

Description of dataset

The dataset is read into SAS as 160 datalines containing the variables Block, Treat, Judge (response
category) and count.

Obs Block Treat Judge count

1 1 1 A 4

2 1 1 B 16

3 1 1 C 17

4 1 1 D 9

5 1 2 A 28

[more datalines here]

154 4 9 B 9

155 4 9 C 16

156 4 9 D 19

157 4 10 A 6

158 4 10 B 9

159 4 10 C 15

160 4 10 D 18

Logistic regression with polytomous response

Logistic regression models for data with polytomous response data may be fitted by proc logistic

using the link=glogit option.

proc logistic;

freq count;

class Treat Block;

model Judge = Treat Block Treat*Block/link=glogit;

run;

[part of the output displayed below]

The LOGISTIC Procedure

Model Fit Statistics
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Intercept

Intercept and

Criterion Only Covariates

AIC 5194.982 5046.674

SC 5211.660 5713.822

-2 Log L 5188.982 4806.674

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

Treat 27 219.9731 <.0001

Block 9 11.7118 0.2300

Treat*Block 81 78.5987 0.5549

Note that SAS prints the Wald test statistic for the interaction Treat× Block. To calculate the likelihood
ratio test statistic (as reported in example 7.1) we need to calculate the difference between −2 log L for
the model with no interaction (output given below) and for the model with interaction (output above).
The likelihood ratio test statistic is found to be

LR = 4900.106− 4806.674 = 93.432 ∼ χ2(81); p-value = 0.1629.

proc logistic data=knaekke;

freq count;

class Treat Block;

model Judge = Treat Block/link=glogit;

run;

[part of the output]

The LOGISTIC Procedure

Model Fit Statistics

Intercept

Intercept and

Criterion Only Covariates

AIC 5194.982 4978.106

SC 5211.660 5194.929

-2 Log L 5188.982 4900.106

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

Treat 27 250.5445 <.0001

Block 9 8.4995 0.4847
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The output shows that the Wald test for removing the Block factor is 8.50 corresponding to a p-value
of 48%. The likelihood ratio test presented in the notes yields a p-value of 47% and may be obtained as
described above.

The 30 parameter estimates for the final model (7.3) are given as part of the output below but note that
all effects are given relative to the group Treat = 10 which is used as reference (Intercept). The output
further shows that the effect of Treat is significant (Wald test= 250.80 ∼ χ2(27), p-value= 0%). Note
that SAS uses the fourth response category as reference. Thus, the output above displays estimates for
log(pij/pi4), j = 1, 2, 3, i = 1, . . . , 40.

proc logistic;

freq count;

class Treat;

model Judge = Treat/link=glogit;

run;

[Part of the output given below]

The LOGISTIC Procedure

Model Fit Statistics

Intercept

Intercept and

Criterion Only Covariates

AIC 5194.982 4968.716

SC 5211.660 5135.503

-2 Log L 5188.982 4908.716

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

Treat 27 250.8018 <.0001

Standard Wald

Parameter Judge DF Estimate Error Chi-Square Pr > ChiSq

Intercept A 1 0.0298 0.0835 0.1276 0.7209

Intercept B 1 0.1883 0.0792 5.6569 0.0174

Intercept C 1 0.7175 0.0725 97.9269 <.0001

Treat 1 A 1 -0.3514 0.2336 2.2633 0.1325

Treat 1 B 1 -0.0485 0.2089 0.0539 0.8163

Treat 1 C 1 -0.1023 0.1899 0.2901 0.5901

Treat 2 A 1 2.1784 0.3095 49.5521 <.0001

Treat 2 B 1 1.3158 0.3226 16.6398 <.0001

Treat 2 C 1 0.9118 0.3177 8.2354 0.0041
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Treat 3 A 1 -0.6524 0.2507 6.7710 0.0093

Treat 3 B 1 -0.0952 0.2087 0.2081 0.6483

Treat 3 C 1 0.0688 0.1835 0.1405 0.7078

Treat 4 A 1 -0.2735 0.2370 1.3310 0.2486

Treat 4 B 1 0.1711 0.2073 0.6809 0.4093

Treat 4 C 1 0.00233 0.1934 0.0001 0.9904

Treat 5 A 1 -0.5559 0.2365 5.5259 0.0187

Treat 5 B 1 -0.4171 0.2175 3.6782 0.0551

Treat 5 C 1 -0.2250 0.1859 1.4653 0.2261

Treat 6 A 1 2.3310 0.3074 57.4832 <.0001

Treat 6 B 1 0.9431 0.3348 7.9364 0.0048

Treat 6 C 1 0.7176 0.3230 4.9370 0.0263

Treat 7 A 1 -0.8221 0.2354 12.1975 0.0005

Treat 7 B 1 -0.5751 0.2088 7.5876 0.0059

Treat 7 C 1 -0.2689 0.1732 2.4117 0.1204

Treat 8 A 1 -0.6460 0.2294 7.9332 0.0049

Treat 8 B 1 -0.6038 0.2157 7.8389 0.0051

Treat 8 C 1 -0.2601 0.1772 2.1549 0.1421

Treat 9 A 1 -0.5944 0.2242 7.0302 0.0080

Treat 9 B 1 -0.1883 0.1940 0.9419 0.3318

Treat 9 C 1 -0.5062 0.1834 7.6159 0.0058
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7.3 Proportional odds models

The proportional odds model is an example of a model for polytomous response data where the ex-
planatory variables have a unified effect on all response categories.

We present the model through an application to the data of example 7.1. Thus,

Yi = (Yi1, . . . , Yi4) ∼ m(ni, (pi1, . . . , pi4))

are the number of plants belonging to the individual judgement groups for a particular combination of
treatment and block. In the proportional odds model we consider the cumulative probabilities

γij = P(Yi ≤ j), j = 1, 2, 3,

and model the logit transform

ηij = log

(
γij

1 − γij

)
= θj − δ(treatmenti, blocki) (7.5)

as a difference between a parameter related to the response group, j, and a parameter for the joint
configuration of treatment and block. The only restriction on the parameters is that we must have
θ1 ≤ θ2 ≤ θ3 (which follows since clearly γi1 ≤ γi2 ≤ γi3).

The big advantage of the proportional odds model lies in the interpretation of the effect of explana-
tory variables. Suppose for instance that we want to compare treatment groups treatment= 3 and
treatment= 7 in block = 1. The change of the (cumulative) odds for response category 1, 2, or 3, when
comparing the two treatment groups are

exp ((θ1 − δ(3, 1))− (θ1 − δ(7, 1))) = exp (δ(3, 1)− δ(7, 1))

exp ((θ2 − δ(3, 1))− (θ2 − δ(7, 1))) = exp (δ(3, 1)− δ(7, 1))

exp ((θ3 − δ(3, 1))− (θ3 − δ(7, 1))) = exp (δ(3, 1)− δ(7, 1)) ,

in particular the treatment effect is the same no matter which response category we consider.

Example 7.1 (continued) For the example with eyespot (knækkefodssyge) the proportional odds model
described by (7.5) may be tested against the full multinomial logistic regression model given by (7.1).
The model (7.5) contains 10 · 4 = 40 parameters for the levels of treatment× block and 3 parameters
for the cumulative log-odds. However, as the two sets of parameters enter additively into (7.5) only
40 + 3 − 1 = 42 parameters may be estimated and the number of degrees of freedom associated with
the test is 120− 42 = 78. The test statistic turns out to be

G2 = 94.07 ∼ χ2(78)

implying that the proportional odds model is accepted with a p-value of 10%. As a graphical check of
the model one may calculate estimates, η̂ij, for the log-odds of cumulative probabilities

ηij = log

(
γij

1 − γij

)
, j = 1, 2, 3, i = 1, . . . , 40.

Under the proportional odds model the differences

ηi2 − ηi1 = θ2 − θ1 and ηi3 − ηi2 = θ3 − θ2

should be independent of i (this is the explanatory variables).
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The figure above displays the estimated differences for the 40 levels of treatment× block against each
of the individual factors. The proportional odds model requires that the level of the points does not
depend in a systematic way on explanatory variables. This is clearly confirmed from the plot.

We may continue by considering the hypothesis H0 :

log

(
γij

1 − γij

)
= θj − (α(treatmenti) + β(blocki)) (7.6)

about the effect of treatment and block entering linearly on the scale of log-odds to cumulative proba-
bilities. The model contains 3 + 10 + 4 = 17 parameters of which only 15 may be estimated. The test of
H0 against the full proportional odds model (7.5) therefore follows a χ2−distribution with 42 − 15 = 27
degrees of freedom. The test statistic is

G2 = 31.25 ∼ χ2(27)

yielding a p-value of 26 %.

Continuing the analysis we find that the block factor may be removed

G2 = 4.69 ∼ χ2(3) p = 20%

but that the treatment effect is highly significant with

G2 = 252.3 ∼ χ2(9) p = 0%.

Our final model is given by

log

(
γij

1 − γij

)
= θj − α(treatmenti). (7.7)

Choosing treatment = 1 as reference group the estimated effect of treatment with approximate 95
%-confidence intervals become
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Parameter Estimate 95 %-conf. int
α̂(2)− α̂(1) -1.387 [-1.758,-1.019]
α̂(3)− α̂(1) 0.156 [-0.201,0.513]
α̂(4)− α̂(1) -0.084 [-0.443,0.275]
α̂(5)− α̂(1) 0.191 [-0.181,0.563]
α̂(6)− α̂(1) -1.713 [-2.101,-1.331]
α̂(7)− α̂(1) 0.343 [-0.019,0.706]
α̂(8)− α̂(1) 0.286 [-0.081,0.653]
α̂(9)− α̂(1) 0.079 [-0.286,0.444]
α̂(10)− α̂(1) 0.231 [-0.134,0.596]

We observe that the only treatment groups with a clear effect compared to the reference group is
treatment = 2 and treatment = 6. From model (7.7) we deduce that for any response category, j, the
change of the cumulative odds by replacing treatment= 1 with either treatment= 2 or treatment= 6
is given by

ÔR21 =
exp(θj − α(2))

exp(θj − α(1))
= exp(α(1)− α(2)) = exp(1.387) = 4.00 [2.77, 5.80]

ÔR61 =
exp(θj − α(6))

exp(θj − α(1))
= exp(α(1)− α(6)) = exp(1.713) = 5.55 [3.78, 8.17].

In particular, the odds that a plant is judged better than a given category will with a probability of 95 %
be 4 to 8 times larger if it is exposed to treatment number 6 rather than to treatment number 1. �

Formulating a statistical model for polytomous data in terms of log-odds of cumulative probabilities
may not seem to be the most obvious thing to do.

However, one motivation for studying the proportional odds model is that it arises naturally as a so-
called threshold model. To see this assume that the true outcome of the experiment is given by in-
dependent continuous random variables Z1, . . . , Zn who are not directly observable. Instead (or as a
direct consequence of the way the data is collected) the individual responses are grouped according to
a number of thresholds

θ1 < θ2 < . . . < θJ−1.

and the analysis must be based solely on records of the discretized data. Assume for instance that
Zi ∼ N(αi, 1) and let γij be the probability that Zi is smaller than θj. Then

γij = P(Zi < θj) = P(Zi − αi < θj − αi) = Φ(θj − αi),

where Φ is the cumulative distribution function for a standard normal distribution. We deduce that

Φ−1(γij) = θj − αi,

and since Φ−1 and the logit function tt logit: p → log(p/1− p) are almost identical (see figure of section
7.2) this is almost equivalent to

log

(
γij

1 − γij

)
= θj − αi.

We conclude that the assumption of the latent variables Zi being normally distributed automatically
leads to a proportional odds model for the cumulative probabilities of the related threshold model. To
be very precise we get a proportional odds model with the probit (= Φ−1) link function and not the
logit link function used in the definition (7.5).
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7.3.1 R-programs and output

Example 7.1 (continued)

For a description of the data set we refer to the R-program in section 7.2.1.

Fit proportional odds models

Proportional odds models are fitted using polr() in the MASS package. Initially we bring the data on
a suitable form by replicating the data so that each dataline corresponds to one plant and contains the
variables x (response with four levels: 1-4), Tvec (treatment), and Bvec (block). The first 10 datalines
look like

x Tvec Bvec

[1,] 1 1 1

[2,] 1 1 1

[3,] 1 1 1

[4,] 1 1 1

[5,] 2 1 1

[6,] 2 1 1

[7,] 2 1 1

[8,] 2 1 1

[9,] 2 1 1

[10,] 2 1 1

The full proportional odds model with interaction between Tvec and Bvec is fitted by

> library(MASS)

> pomod.full=polr(x~Tvec*Bvec)

where of course the first line is only to be run once for each R session.

A test for effect of the interaction Tvec× Bvec can be produced by

> pomod.add=polr(x~Tvec+Bvec)

> anova(pomod.add,pomod.full,test="Chisq")

Likelihood ratio tests of ordinal regression models

Response: x

Model Resid. df Resid. Dev Test Df LR stat. Pr(Chi)

1 Tvec + Bvec 1904 4931.992

2 Tvec * Bvec 1877 4900.743 1 vs 2 27 31.24874 0.2610487

Obtaining parameter estimates

The final model turns out to be the one with only a main effect of Tvec. Parameter estimates and confi-
dence intervals may be obtained as follows

> pomod.treat=polr(x~Tvec)

> summary(pomod.treat)
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Re-fitting to get Hessian

Call:

polr(formula = x ~ Tvec)

Coefficients:

Value Std. Error t value

Tvec2 -1.38717731 0.1883990 -7.3629766

Tvec3 0.15585034 0.1818799 0.8568860

Tvec4 -0.08362947 0.1831287 -0.4566705

Tvec5 0.19082717 0.1898748 1.0050155

Tvec6 -1.71329713 0.1963044 -8.7277560

Tvec7 0.34349571 0.1848669 1.8580705

Tvec8 0.28596909 0.1870551 1.5287960

Tvec9 0.07889693 0.1863414 0.4234000

Tvec10 0.23099318 0.1860247 1.2417337

Intercepts:

Value Std. Error t value

A|B -1.5940 0.1388 -11.4844

B|C -0.4562 0.1331 -3.4278

C|D 1.3109 0.1371 9.5587

Residual Deviance: 4936.683

AIC: 4960.683

> confint(pomod.treat)

2.5 % 97.5 %

Tvec2 -1.75808654 -1.0192749

Tvec3 -0.20069012 0.5125035

Tvec4 -0.44273121 0.2753637

Tvec5 -0.18130204 0.5632525

Tvec6 -2.10051545 -1.3306232

Tvec7 -0.01875220 0.7061552

Tvec8 -0.08060793 0.6528828

Tvec9 -0.28632210 0.4443697

Tvec10 -0.13358844 0.5958591

In the output Tvec6 refers to the effect of treatment group number 6 compared to treatment group 1
which is used as reference. The Intercepts are estimates for the parameters θj in the proportional odds
model.

7.3.2 SAS-programs and output

Example 7.1 (continued)

For a description of the data set we refer to the SAS-program in section 7.2.2.
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Fit proportional odds model

The full proportional odds model with interaction between Treat and Block is fitted by

proc genmod data=knaekke;

weight count;

class Treat Block;

model Judge = Treat Block Treat*Block/dist=mult link=cumlogit type3;

run;

[part of the output]

The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Log Likelihood -2450.3716

LR Statistics For Type 3 Analysis

Chi-

Source DF Square Pr > ChiSq

Treat 9 256.91 <.0001

Block 3 5.70 0.1273

Treat*Block 27 31.25 0.2610

When fitting the proportional odds model it is important to specify the link = cumlogit option. Note
that since our response is polytomous we need to select the multinomial distribution for the response
(dist = mult). We read off that

−2 · log L = −2 · (−2450.3716) = 4900.7432.

For the full model we have from section 7.2.2 that −2 log L = 4806.674 hence the likelihood ratio test
statistic form testing the proportional odds model become

LR = 4900.7432− 4806.674 = 94.0692 ∼ χ2(120− 42); p-value = 10%.

The output further shows that the interaction Treat ∗ Block may be removed.

Running proc genmod with the interaction removed from the model line yields (among others) the out-
put

LR Statistics For Type 3 Analysis

Chi-

Source DF Square Pr > ChiSq

Treat 9 253.30 <.0001

Block 3 4.69 0.1958

showing that Block has no significant effect of the judgement of the plant.
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Obtaining parameter estimates

Finally running the program lines

proc genmod data=knaekke;

weight count;

class Treat;

model Judge = Treat /dist=mult link=cumlogit type3;

estimate ’LogOR21’ Treat -1 1 /exp;

estimate ’LogOR61’ Treat -1 0 0 0 0 1 /exp;

run;

[part of the output]

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept1 1 -1.8251 0.1407 -2.1007 -1.5494 168.36 <.0001

Intercept2 1 -0.6872 0.1344 -0.9506 -0.4239 26.16 <.0001

Intercept3 1 1.0799 0.1361 0.8131 1.3467 62.93 <.0001

Treat 1 1 0.2310 0.1860 -0.1336 0.5956 1.54 0.2143

Treat 2 1 1.6182 0.1895 1.2468 1.9895 72.94 <.0001

Treat 3 1 0.0751 0.1822 -0.2820 0.4323 0.17 0.6801

Treat 4 1 0.3146 0.1837 -0.0454 0.6746 2.93 0.0867

Treat 5 1 0.0402 0.1902 -0.3326 0.4129 0.04 0.8327

Treat 6 1 1.9443 0.1974 1.5574 2.3312 97.00 <.0001

Treat 7 1 -0.1125 0.1851 -0.4753 0.2502 0.37 0.5433

Treat 8 1 -0.0550 0.1873 -0.4221 0.3121 0.09 0.7691

Treat 9 1 0.1521 0.1868 -0.2140 0.5182 0.66 0.4154

Treat 10 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000

LR Statistics For Type 3 Analysis

Chi-

Source DF Square Pr > ChiSq

Treat 9 252.30 <.0001

Contrast Estimate Results

Standard Chi-

Label Estimate Error Alpha Confidence Limits Square Pr > ChiSq

LogOR21 1.3872 0.1884 0.05 1.0179 1.7564 54.21 <.0001

Exp(LogOR21) 4.0035 0.7543 0.05 2.7674 5.7917

LogOR61 1.7133 0.1963 0.05 1.3285 2.0980 76.17 <.0001

Exp(LogOR61) 5.5471 1.0889 0.05 3.7755 8.1501

shows that Treat has a significant effect and display parameter estimates. If the use the parameteriza-
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tion

log

(
γij

1 − γij

)
= θj − α(treatmenti).

of model (7.7) the output contains estimates of θ1, θ2, θ3 and the contrasts

α(10)− α(1), α(10)− α(2), . . . , α(10)− α(9).

The lines

estimate ’LogOR21’ Treat -1 1 /exp;

estimate ’LogOR61’ Treat -1 0 0 0 0 1 /exp;

make SAS give estimates and confidence intervals for the log-odds ratio and the odds ratio of the effect
of treament 2 or 6 in relation to treatment 1.



Chapter 8

Exercises

8.1 Juiciness of peas

In a sensoric experiment a number of assessors were asked to evaluate the juicyness of 15 batches of
peas on a continuous scale from zero to 15. Small values indicate dryness and large values juiciness.
The average assessments are listed in the last column in Table 8.1. Also measured for each batch were
the starch concent (percentage of dry matter) and the content of sucrose (g per 100 g fresh weight). In
the table the starch and sucrose measurements after subtraction of the average values (18.10 for starch
and 5.62 for sucrose) are listed.

Batch Starch Sucrose Juiciness
1 −2.80 0.04 8.00
2 −2.98 −0.27 8.57
3 4.04 −0.33 4.37
4 2.59 −0.17 6.57
5 −0.91 0.84 7.34
6 −2.98 0.56 8.60
7 −2.75 0.01 9.59
8 −2.28 −0.96 3.81
9 −0.75 0.99 7.55

10 4.80 −1.36 3.73
11 −0.45 0.59 8.77
12 2.87 −0.29 4.85
13 2.71 −0.11 6.72
14 −0.45 0.48 7.62
15 −0.66 −0.02 9.60

Table 8.1: The pea data: starch content, sucrose content and average assessment of juiciness. The average
values 18.10 and 5.62 have been subtracted from starch and sucrose, respectively.

1. The interest is on prediction of the assessment of juiciness from concent of starch and sucrose.
What would be a reasonable model for this purpose? Write up the model formally. What is the
interpretation of the parameters?

2. A model is fitted with R and SAS below, and some output is given, too. Read off the parameter

147
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estimates. Do both starch and sucrose contribute significantly to the assessment of juicyness?

3. What is the expected difference in juiciness for two batches with the same sucrose content but
with a difference in starch content of 2%? Give also an 95% confidence interval for the expected
difference.

4. Consider the plots in Figures 8.1 and the residual plots and the Cook’s plot in 8.2. Is the model is
appropriate for the data? Are there highly influential observations?

5. The same model as before is fitted again but without observation no. 8. Does the conclusion
change? How would you proceed the data analysis?

6. What is the expected juiciness of a batch of peas with 20% starch in dry matter and a sucrose con-
tent of 6 g per 100 g fresh weight? Usually we would supply such an expectation/prediction with
a confidence interval or a prediction interval. Explain the difference between these two intervals.
Which is the widest?
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Figure 8.1: Plot of juiciness against starch and sucrose for the peas data.

R output

> model1 = lm(juicy ~ starch + sucrose)

> summary(model1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.0460 0.3477 20.262 1.20e-10 ***

starch -0.3428 0.1471 -2.330 0.0381 *

sucrose 1.4596 0.6255 2.333 0.0378 *

Residual standard error: 1.347 on 12 degrees of freedom

> confint(model1)

2.5 % 97.5 %

(Intercept) 6.28833783 7.80366217

starch -0.66344217 -0.02224553
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Figure 8.2: Peas: residual plots and plot of Cook’s distances for the multiple regression model of juicy-
ness on starch and sucrose.

sucrose 0.09673893 2.82243753

> starch2 = starch[-8]

> sucrose2 = sucrose[-8]

> juicy2 = juicy[-8]

> model2 = lm(juicy2 ~ starch2 + sucrose2)

> summary(model2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.3477 0.2590 28.370 1.22e-11 ***

starch2 -0.5597 0.1198 -4.672 0.00068 ***

sucrose2 0.2998 0.5450 0.550 0.59326

Residual standard error: 0.9498 on 11 degrees of freedom

SAS programs and output
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proc glm data = peas;

model juicy = starch sucrose / clparm ;

output out = glmout predicted = p student = stdres cookd = cook;

run;

data peas2;

set peas;

if juicy = 3.81 then delete;

run;

proc glm data = peas2;

model juicy = starch sucrose;

run;

with output:

The GLM Procedure

Number of Observations Read 15

Number of Observations Used 15

Dependent Variable: juicy

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 34.30209735 17.15104868 9.46 0.0034

Error 12 21.76626265 1.81385522

Corrected Total 14 56.06836000

Source DF Type III SS Mean Square F Value Pr > F

starch 1 9.84719873 9.84719873 5.43 0.0381

sucrose 1 9.87660077 9.87660077 5.45 0.0378

Standard

Parameter Estimate Error t Value Pr > |t| 95% Confidence Limits

Intercept 7.046000000 0.34774083 20.26 <.0001 6.288337829 7.803662171

starch -0.342843847 0.14714358 -2.33 0.0381 -0.663442166 -0.022245527

sucrose 1.459588229 0.62550086 2.33 0.0378 0.096738926 2.822437532

The GLM Procedure

Number of Observations Read 14

Number of Observations Used 14

Dependent Variable: juicy

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 34.92484849 17.46242425 19.36 0.0002

Error 11 9.92383722 0.90216702

Corrected Total 13 44.84868571

Source DF Type III SS Mean Square F Value Pr > F
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starch 1 19.69334472 19.69334472 21.83 0.0007

sucrose 1 0.27298093 0.27298093 0.30 0.5933

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 7.347739455 0.25899902 28.37 <.0001

starch -0.559725002 0.11980045 -4.67 0.0007

sucrose 0.299813165 0.54503955 0.55 0.5933

8.2 Outdoor Running World Records

The world records on ten distances (outdoor running) are listed for men and women in Table 8.2. The
records were taken from the webiste of the International Association of Athletics Federation (IAAF),
http://www.iaaf.org on October 18, 2006. You are not going use the dates for the records in the fol-
lowing, only the distances and the times.

Men Women

Distance (m) Time (sec) Date Time (sec) Date

100 9.77 14/06/05 10.49 16/07/88

200 19.32 01/08/96 21.34 29/09/88

400 43.18 26/08/99 47.60 06/10/85

800 101.11 24/08/97 113.28 26/07/83

1500 206.00 14/07/98 230.46 11/09/93

3000 440.67 01/09/96 486.11 13/09/93

5000 757.35 31/05/04 864.53 03/06/06

10000 1577.53 26/08/05 1771.78 08/09/93

21097.5 3535.00 15/01/06 4004.00 15/01/99

42195 7495.00 28/09/03 8125.00 13/04/03

Table 8.2: World records on October 18, 2006.

We want to examine the dependence on the record (the time) of the distance, and to examine the differ-
ence between men and women. In particular we want answers to the following questions:

1. What is the expected increment in the world record when the distance is doubled? And is the
answer the same for all distances? And the same for men and women?

2. How much faster are men compared to women? And does the difference depend on the distance?

First of all, you have to consider how to analyse the data in order to be able to answer these questions.
You may consider the following questions:

◦ What kind of model is appropriate for these data?

◦ Plot time against distance and log-time against log-distance, perhaps for men and women seper-
ately. Do you think it is a good idea to transform the data?
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◦ Identify the parameter(s) that have to do with the dependence of distance. What is the interpreta-
tion of the parameter(s)? What does it tell you about the first “research question”?

◦ Identify the parameter(s) that have to do with the difference between the sexes. What is the inter-
pretation of the parameter(s)? What does it tell you about the second “research question”?

Finally, an extra question:

3. On the IAAF-webpage it also appears that the world records for 100 km is 22413 seconds (6
hours, 13 minutes, 33 seconds) for men and 23591 second (6 hours, 33 minutes and 11 seconds)
for women. How does this compare to the data material and the model you have used?

8.3 Growth of turkeys

The following experiment was carried out in order to investigate the effect of vitamin A on growth of
turkey. 48 turkeys were randomly allocated to six groups of eight turkeys, and each group was given a
certain amount of vitamin A in their feed. The amount of vitamin A and the average weekly increment
in logarithmic weight for each group are listed in Table 8.3.

Vitamin A Increment of log-weight
1.5 0.159
3.0 0.226
6.0 0.299

12.0 0.316
24.0 0.330
48.0 0.298

Table 8.3: The turkey data: amount of vitamin A in feed (IU/g) and average weekly increment in loga-
rithmic weight (gram).

1. Plot the average increment in logarithmic weight against the logarithm to the amount of vitamin
A.

2. Write up a model for the data. Compute estimates and confidence intervals for the parameters.

3. Estimate the optimal amount of vitamin A in the sense that the expected increment in logarithmic
weight is the largest possible.

4. Do you have any objections against this analysis?

8.4 Phosphor in plants

In a field experiment the concentration of phosphor available for plant was measured for each of 18
plants. Moreover, the concentration of unorganic phosphor was chemically determined and the con-
centration of an organic phosphor component was measured for each plant. The primary interest is
to describe the concentration of phosphor available for the plants as a function of the concentration of
unorganic and organic phosphor. The results are listed in Table 8.4.

Analyze the data!
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Unorganic Organic Plant
0.4 53 64
0.4 23 60
3.1 19 71
0.6 34 61
4.7 24 54
1.7 65 77
9.4 44 81

10.1 31 93
11.6 29 93
12.6 58 51
10.9 37 76
23.1 46 96
23.1 50 77
21.6 44 93
23.1 56 95
1.9 36 54

26.8 58 168
29.9 51 99

Table 8.4: Concentration of phosphor in plants.

This includes proper specification of the model, model validation, check for strongly influential observa-
tions, model reduction (if possible), parameter estimation and interpretation, conclusion of the analysis.

8.5 Accumulation of drug in liver

An experiment with rats was carried out in order to investigate the accumulation of a certain drug in
the liver. Each rat was given a dose of the drug, approximately proportional to their bodyweight. After
a period the rats were slaughtered, their livers weighed and the drug dose in the liver was measured.
The result for the 19 rats are given in Table 8.5.

Analyze the data.

This includes proper specification of the model, model validation, check for strongly influential observa-
tions, model reduction (if possible), parameter estimation and interpretation, conclusion of the analysis.

8.6 Yield of barley

The following experiment was carried out in a greenhouse. 15 pots were sown with barley seeds: 3,
7, 15, 34, 77 barley seeds per pot, respectively, with three pots for each number of barley seeds. After
harvest, the total fresh weight yields (in grams) was measured for each pot. The results are listed in
Table 8.6.

1. Plot the yield against the number of barley seeds and test for identical variances in the five groups.

2. Consider instead the logarithmic yield as response, and repeat question 1 with this response.
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Bodyweight Liver weight Dose Dose in liver
176 6.5 0.88 0.42
176 9.5 0.88 0.25
190 9.0 1.00 0.56
176 8.9 0.88 0.23
200 7.2 1.00 0.23
167 8.9 0.83 0.32
188 8.0 0.94 0.37
195 10.0 0.98 0.41
176 8.0 0.88 0.33
165 7.9 0.84 0.38
158 6.9 0.80 0.27
148 7.3 0.74 0.36
149 5.2 0.75 0.21
163 8.4 0.81 0.28
170 7.2 0.85 0.34
186 6.8 0.94 0.28
146 7.3 0.73 0.30
181 9.0 0.90 0.37
149 6.4 0.75 0.46

Table 8.5: Accumulation of drug in liver.

No. of seeds Yield
3 7.5 9.8 9.0
7 18.8 27.7 27.1

15 64.7 30.2 37.0
34 84.3 110.0 71.2
77 125.8 85.7 91.9

Table 8.6: The barley data.

We want to use the following non-linear model for the relationship between the number of barley seeds
(x) and the logarithmic yield (y):

y ≈ a − b · e−cx (8.1)

3. What is the interpretation of the parameters a and b? (Hint: what happens for x = 0 and x very large?)
Suggest starting values for a and b.

4. We also need a starting value for c. From the graph, choose a pair (x, y) which you believe satisfy
equation (8.1), that is, a pair nearby the graph. Use this point, the starting values from question 3,
and equation (8.1) to compute a starting value for c.

5. Fit the non-linear model to data, and report the estimates.

6. Model validation: Make a test of the non-linear regression model against the oneway ANOVA
with five groups. Make also a plot of observed and fitted values as well as a residual plot. What is
the conclusion regarding the appropriateness of the model?
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8.7 Production of milk powder

In an experiment about production of milk powder two factors were varied: water activity on three
levels (1, 2, 3) and temperature while drying (100, 110, 120, 140 Celcius degrees). Only 9 of the 12
combinations were tested in the experiment.

There were three replications in the experiment, in the sense that milk powder was prepared in three
rounds. This gives 27 samples of milk powder in total. Each of these was stored and measurements
were taken after 4, 6 and 8 weeks. Each time the concentration of maillard reaction products as well as
a sensoric taste score (high values means good taste) were measured. The data are listed in Table 8.7.

First consider only measurements from week4, that is, the first 27 observations.

1. Set up a model for the concentration of maillard reactions products: which factors are relevant;
should they be fixed or random? Draw also the corresponding factor diagram.

2. Analyze the data in order to investigate the effect of water activity and temperature on the con-
centration of maillard reaction products.

From now on, consider the full dataset with 81 observations.

3. Set up a model for the concentration of maillard reaction products. Draw also the corresponding
factor diagram.

Hint: Which (three-factor) interaction corresponding to the grouping of the 81 observations into
the 27 different samples?

Another hint: make sure to keep track of the ordering of the factors.

4. Write a few lines of R code or SAS code that would fit the model. Consider how you would try to
reduce the model.

Hint for R-users: if there are two random factors fac1 and fac2 where fac1 is coarser than fac2,
then the model may be fitted with lme as follows:

lme(response ~ linear part, random =~ 1|fac1/fac2)

5. A particular analysis ended up with a final model which is fitted with R and SAS below. Write up
the corresponding model. Use the output to estimate the variance parameters. Also, estimate the
expected concentration of maillard reaction products for water activity level 2, after 4 weeks of
storage at 140 Celcius degress.

6. Make an analysis of the taste score variable in order to examine how temperature, water activity
and storage time affects the taste. What is the conclusion?

R programs and output for question 5.

> sample = rnd:temp:water

> model5a = lme(maillard ~ water+week+temp, random=~ 1|rnd/sample)

> summary(model5a)

Linear mixed-effects model fit by REML

Fixed effects: maillard ~ water + week + temp

Value Std.Error DF t-value p-value
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Round Week Maillard Taste Water Temp Round Week Maillard Taste Water Temp

1 4 2.90 10.1 1 100 2 6 2.11 11.2 3 100
1 4 2.13 11.0 1 110 2 6 1.98 11.8 3 110
1 4 2.00 11.1 1 120 2 6 2.20 11.0 3 140
1 4 2.13 11.1 2 100 3 6 2.20 7.0 1 100
1 4 2.38 11.9 2 120 3 6 2.34 10.7 1 110
1 4 2.56 10.7 2 140 3 6 2.49 10.3 1 120
1 4 2.60 10.8 3 100 3 6 2.63 9.7 2 100
1 4 1.91 11.0 3 110 3 6 3.06 9.0 2 120
1 4 2.27 10.8 3 140 3 6 3.28 9.6 2 140
2 4 2.19 11.0 1 100 3 6 2.34 10.2 3 100
2 4 2.32 11.0 1 110 3 6 2.51 9.2 3 110
2 4 2.41 11.6 1 120 3 6 2.77 10.2 3 140
2 4 2.49 11.1 2 100 1 8 2.39 9.6 1 100
2 4 2.61 11.7 2 120 1 8 2.41 9.8 1 110
2 4 2.63 10.8 2 140 1 8 2.71 11.4 1 120
2 4 2.06 11.0 3 100 1 8 2.49 11.2 2 100
2 4 1.98 10.0 3 110 1 8 2.06 11.2 2 120
2 4 2.27 11.2 3 140 1 8 3.10 9.8 2 140
3 4 2.13 10.1 1 100 1 8 2.32 10.8 3 100
3 4 2.13 9.4 1 110 1 8 2.29 9.4 3 110
3 4 2.22 10.7 1 120 1 8 2.72 12.0 3 140
3 4 2.80 8.3 2 100 2 8 2.27 11.0 1 100
3 4 2.77 10.9 2 120 2 8 2.25 11.2 1 110
3 4 2.99 9.2 2 140 2 8 2.46 9.6 1 120
3 4 1.98 10.3 3 100 2 8 2.53 9.2 2 100
3 4 1.98 9.3 3 110 2 8 2.70 11.0 2 120
3 4 2.20 10.5 3 140 2 8 2.81 11.6 2 140
1 6 2.13 10.0 1 100 2 8 2.20 11.8 3 100
1 6 2.34 10.5 1 110 2 8 2.15 10.6 3 110
1 6 2.49 11.2 1 120 2 8 2.41 11.4 3 140
1 6 2.41 10.8 2 100 3 8 2.41 9.6 1 100
1 6 2.85 11.2 2 120 3 8 2.42 9.0 1 110
1 6 2.84 11.2 2 140 3 8 2.73 10.2 1 120
1 6 2.24 8.4 3 100 3 8 3.33 7.8 2 100
1 6 2.06 11.4 3 110 3 8 3.25 9.4 2 120
1 6 2.42 11.6 3 140 3 8 3.75 9.6 2 140
2 6 2.20 9.3 1 100 3 8 2.80 10.6 3 100
2 6 2.27 11.3 1 110 3 8 2.81 10.2 3 110
2 6 2.49 11.7 1 120 3 8 3.06 10.0 3 140
2 6 2.34 11.2 2 100
2 6 2.70 10.8 2 120
2 6 2.61 11.0 2 140

Table 8.7: The milk powder data.
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(Intercept) 2.1929136 0.11340945 52 19.336250 0.0000

water2 0.2828889 0.08142711 19 3.474136 0.0025

water3 -0.0908889 0.08142711 19 -1.116199 0.2783

week6 0.1207407 0.05777774 52 2.089745 0.0415

week8 0.2885185 0.05777774 52 4.993593 0.0000

temp110 -0.0461111 0.08636649 19 -0.533900 0.5996

temp120 0.1058889 0.08636649 19 1.226041 0.2352

temp140 0.2907778 0.08636649 19 3.366789 0.0032

> VarCorr(model5a)

Variance StdDev

rnd = pdLogChol(1)

(Intercept) 0.020328503 0.14257806

sample = pdLogChol(1)

(Intercept) 0.009841698 0.09920533

Residual 0.045066615 0.21228899

SAS programs and output for question 5.

proc mixed data=milk nobound;

class water week temp rnd;

model maillard = water week temp / ddfm=satterth solution;

random rnd temp*water*rnd;

run;

with output

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

1 1 18.30982410 0.00000000

Convergence criteria met.

Covariance Parameter

Estimates

Cov Parm Estimate

rnd 0.02033

water*temp*rnd 0.009842

Residual 0.04507

Fit Statistics

-2 Res Log Likelihood 18.3

AIC (smaller is better) 24.3

AICC (smaller is better) 24.7

BIC (smaller is better) 21.6

Solution for Fixed Effects
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Standard

Effect water week temp Estimate Error DF t Value Pr > |t|

Intercept 2.6813 0.1170 6.07 22.92 <.0001

water 1 0.09089 0.08143 19 1.12 0.2783

water 2 0.3738 0.08143 19 4.59 0.0002

water 3 0 . . . .

week 4 -0.2885 0.05778 52 -4.99 <.0001

week 6 -0.1678 0.05778 52 -2.90 0.0054

week 8 0 . . . .

temp 100 -0.2908 0.08637 19 -3.37 0.0032

temp 110 -0.3369 0.09973 19 -3.38 0.0032

temp 120 -0.1849 0.09973 19 -1.85 0.0793

temp 140 0 . . . .

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

water 2 19 11.46 0.0005

week 2 52 12.58 <.0001

temp 3 19 4.91 0.0108

8.8 Disease in cucumbers

A greenhouse experiment was carried out to investigate how the spread of a disease (“agurkesyge”) in
cucumbers depends on climate and on the amount of fertilizer for two varieties. The following data
(kindly supplied by Eigil de Neergård, Department of Plant Pathology, KVL) are an extract from the
experiment. Two climates were used: 1 (change to day temperature 3 hours before sunrise) and 2 (nor-
mal change to day temperature). Three amounts of fertilizer were applied: normal (2.0 units), high (3.5
units), and extra high (4.0 units). The two varieties were Aminex and Dalibor.

At a certain time the plants were “standardized” to have equally many leaves, and then (on day 0,
say) the plants were contaminated with the disease. On 8 particular subsequent days the amount of
infection (in percent) was registered. From the resulting curve of infection two summary measures
were calculated (in a way not specified here), namely the rate of spread of the disease, and the level of
infection at the end of the period.

There were 3 blocks each consisting of 2 sections, a section being a part of the greenhouse. Each section
consisted of 3 plots, which were each divided into 2 subplots, each of which had 6-8 plants. Thus there
were a total of 36 subplots. Results were recorded for each subplot.

The experimental factors were randomly allocated to the different units as follows: the 2 climates were
allocated to the 2 sections within each block, the 3 amounts of fertilizer were allocated to the 3 plots
within each section, and finally the 2 varieties were allocated to the 2 subplots within each plot. Thus,
in summary, there were

◦ 3 blocks

◦ 2 sections per block (given 2 different climates)

◦ 3 plots per section (given 3 different amounts of fertilizer)

◦ 2 subplots per plot (with 2 different varieties)
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The results are given in Table 8.8.

1. Write up a statistical model and draw the corresponding factor diagram.

2. Analyze the end level of disease in order to investigate the effect of the different factors in the
experiment.

3. Analyze the rate of spread in order to investigate the effect of the different factors in the experi-
ment.

8.9 Tenderness of pork

In an experiment concerning chilling of pork two chilling methods (tunnel-chilling and fast-chilling)
were compared. 24 porks were sampled from two pH-groups (high and low pH, 12 porks from each).
After slaughtering the 24 porks were divided into two sides. One side was tunnel-chilled, the other
fast-chilled. After some time the tenderness of the 48 meat pieces was measured. The data is listed in
Table 8.9. The experiment was made by Anders Juel Møller, KVL.

Analyze the data in order to investigate the effect of pH and chilling method on tenderness of pork
meat.

8.10 Summary measure analysis of the growth of rats data

Consider the growth of rats data from Example 5.1.

Use the increment in log-weight from week 1 to week 5 as response and carry out an analysis to see if
there is an effect of treatment on the increment.

In particular:

◦ create the variable with the increments.

◦ what is a reasonable model?

◦ is there a significant effect of treatment on the increments?

◦ be careful with the conclusion: quantify the treatment differences (if any). For each treatment
group, estimate the factor with which the weight of a rat increases from week 1 to week 5.

8.11 Random intercepts analysis of the growth of rats data

Consider again the growth of rats data from Example 5.1. Analyze the data with a random intercepts
model with rat as a random effect. This includes considering the following issues:

◦ What is a reasonable model for the fixed part of the model? You may get inspiration from the
subject profile plot (left plot of Figure 5.1).

◦ Reduce the model as much as possible.

◦ What is the conclusion about treatment differences? Report relevant estimates from the final
model. Could you think of a way to graphically report the results of the analysis?
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Block Section Climate Fertilizer Variety End level Rate
1 1 2 2.0 aminex 48.8981 0.06915
1 1 2 2.0 dalibor 42.2463 0.06595
1 1 2 3.5 aminex 48.2108 0.04679
1 1 2 3.5 dalibor 41.6767 0.04881
1 1 2 4.0 aminex 55.4369 0.04025
1 1 2 4.0 dalibor 40.9562 0.04859
1 2 1 2.0 aminex 51.5573 0.09353
1 2 1 2.0 dalibor 36.7739 0.10353
1 2 1 3.5 aminex 47.9937 0.05327
1 2 1 3.5 dalibor 47.8723 0.04397
1 2 1 4.0 aminex 57.9171 0.05225
1 2 1 4.0 dalibor 37.7185 0.09324
2 3 2 2.0 aminex 60.1747 0.04182
2 3 2 2.0 dalibor 45.6937 0.06983
2 3 2 3.5 aminex 51.0017 0.08863
2 3 2 3.5 dalibor 52.2796 0.03622
2 3 2 4.0 aminex 51.1251 0.05875
2 3 2 4.0 dalibor 48.7217 0.08169
2 4 1 2.0 aminex 51.6001 0.07001
2 4 1 2.0 dalibor 50.4463 0.09907
2 4 1 3.5 aminex 48.3387 0.05788
2 4 1 3.5 dalibor 38.6538 0.06834
2 4 1 4.0 aminex 51.3147 0.05695
2 4 1 4.0 dalibor 38.2488 0.07908
3 5 1 2.0 aminex 49.6958 0.07218
3 5 1 2.0 dalibor 29.6786 0.11351
3 5 1 3.5 aminex 46.6692 0.08825
3 5 1 3.5 dalibor 36.5892 0.09107
3 5 1 4.0 aminex 56.0320 0.04532
3 5 1 4.0 dalibor 36.0955 0.08712
3 6 2 2.0 aminex 45.9790 0.08882
3 6 2 2.0 dalibor 37.2489 0.12796
3 6 2 3.5 aminex 40.7277 0.06418
3 6 2 3.5 dalibor 38.4831 0.08540
3 6 2 4.0 aminex 44.5242 0.06215
3 6 2 4.0 dalibor 34.3907 0.09651

Table 8.8: The cucumber data.
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Pork pH-group Tunnel Fast
1 low 7.22 5.56
2 low 3.11 3.33
3 low 7.44 7.00
4 low 4.33 4.89
5 low 6.78 6.56
6 low 5.56 5.67
7 low 7.33 6.33
8 low 4.22 5.67
9 low 3.89 4.00

10 low 5.78 5.56
11 low 6.44 5.67
12 low 8.00 5.33
13 high 8.44 8.44
14 high 7.11 6.00
15 high 6.00 5.78
16 high 7.56 7.67
17 high 5.11 4.56
18 high 8.67 8.00
19 high 5.78 7.67
20 high 6.11 5.67
21 high 7.44 7.56
22 high 7.67 6.11
23 high 8.00 8.22
24 high 8.78 8.44

Table 8.9: The tenderness of pork data
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8.12 A test for the thyroxin effect across weeks

Consider the repeated measures analysis of the growth of rats data from Example 5.1. As mentioned
in the text, a test of the thyroxin effect across all weeks could have been appropriate. What is the hy-
pothesis? What is the corresponding reduced model? How would you carry out the test in practice? Do
it.

8.13 Growth of guinea pigs

In order to investigate the effect of vitamin E on growth of guinea pigs 15 animals were followed during
a 7 week experimental period. In week 1 all animals were given a growth inhibiting substance and
in week 5 their feed was supplemented by varying doses (0, low, high) of vitamin E. There were five
animals in each treatment group. The weight of each animal was recorded at the end of weeks 1, 3, 4, 5,
6 and 7. The data is given in Table 8.10.

Week

Dose Animal 1 3 4 5 6 7

1 455 460 510 504 436 466

2 467 565 610 596 542 587

0 3 445 530 580 597 582 619

4 485 542 594 583 611 612

5 480 500 550 528 562 576

6 514 560 565 524 552 597

7 440 480 536 484 567 569

low 8 495 570 569 585 576 677

9 520 590 610 637 671 702

10 503 555 591 605 649 675

11 496 560 622 622 632 670

12 498 540 589 557 568 609

high 13 478 510 568 555 576 605

14 545 565 580 601 633 649

15 472 498 540 524 532 583

Table 8.10: The growth of guinea pigs data

1. Make some illustrative plots of the data.

2. Use the weight increment as a summary statistic and analyze it in order to see if there is an effect
of vitamin E.

3. Write up a model for all the data (repeated measurements) and test whether it can be reduced to a
model with random intercepts.

4. Reduce the systematic part of the model (if possible).

5. Formulate conclusions in the final model.
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8.14 Activity of rats

The data comes from an investigation of the effect of a certain type of exposure to the activity of rats.
The experimental unit was a cage with two rats. During the entire experimental period the rats were
daily exposed to the matter under investigation, in one of three concentrations (treatment 1, 2 and 3,
respectively). Once per month month during 10 months the activity of the rats was measured by placing
the rats from one cage in a chamber in which each intersection of a light beam was counted. The total
count through a period of 57 hours was used as the result for that cage. The data is listed in Table 8.11.

In the following, use the logarithmic counts for the analysis.

1. Make some illustrative plots of the data.

2. Choose a summary statistic and analyze it in order to see if there is an effect of treatment.

3. Write up a model for all the data (repeated measurements). Fit the model.

4. Can the model be reduced to a model with random intercepts?

5. Reduce the systematic part of the model.

Hint: There are a number of possibilities. Is the interaction between month and treatment signif-
icant? Are all treatments significantly different? Can the relation between month and rat activity
be simplified?

6. What is the conclusion regarding the effect of the treatments? Report the relevant estimates from
the final model. What would be a good way to report the results?

8.15 Photosynthesis in pines

An experiment with 40 shoots of pines was carried out in order to investigate the effect of a salt treatment
on photosynthesis. The 40 shoots came from 20 families, 10 of which were placed in a green house and
10 were placed outside. From each family two shoots were selected at random. One shoot was treated
with salt, the other was not. Phosynthesis was measured before the treatment and again 1, 4, 7, 15 and
29 days after the treatment. The experiment was carried out by Anders Rebild, Arboretet, KVL.

The results from the experiment are listed in Table 8.12. In the table, treatment 2 is the salt treatment
and treatment 1 is control. Note that observations are missing from four shoots from the green house.

1. Make some illustrative plots of the data.

2. Choose a summary statistic and analyze it in order to see if there is an effect of treatment. Remem-
ber to include other relevant variables in the analysis.

3. Write up a model for all the data (repeated measurements). How can the photosynthesis measure-
ment before treatment be included in the model?

4. Fit the model.

5. Can the model be reduced to a model with random intercepts?

6. Is it possible to reduce the fixed effects part of the model?

7. What is the conclusion regarding the effect of salt treatment on photosynthesis? Report relevant
estimates from the final model. What would be a good way to report the results?
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8.16 Slagteriernes Svinesundhedstjeneste

When inspection of meat at the slaughteries reveals too many problems with a particular pig breeder the
breeder is offered a visit by Slagteriernes Svinesundstjeneste (SST). At present the expenses of the visits are
covered by a mandatory fee payed to the slaugtheries by all breeders. To examine whether the breeders
are willing to pay a fee directly to SST for the visit an investigation has been made. The data has been
grouped according to the size of the herd of pigs and whether the breeder has previously been offered a
visit by SST (Data from S. Andersen: Analyse af tælledata, 1998).

Size of herd Offered visit Willing to pay fee
yes no

< 500 yes 8 10
< 500 no 58 131

500-1000 yes 21 30
500-1000 no 15 33
> 1000 yes 12 17
> 1000 no 6 14

1. Examine how the willingness to pay a fee to SST depends on the two explanatory variables.

2. Formulate a conclusion of the statistical analysis where you report relevant odds ratios accompa-
gnied by 95%−confidence intervals.

8.17 Mortality of beetles exposed to CS2

Eight groups each consisting of approximately 60 beetles have been exposed to different doses of the
gas CS2 for a period of 5 hours. At the end of the experiment the number of living beetles has been
observed. The data comes from ***Bliss C. I. (1935): The calculation of the dosage-mortality curve and is
shown below.

Dose (mg/l) No. of beetles No. of deaths
49.05689 59 6
52.99074 60 13
56.91150 62 18
60.84151 56 28
64.75898 63 52
68.69103 59 53
72.61060 62 61
76.54203 60 60

1. Calculate log odds for each of the eight groups and plot these against the dose.

2. Does the plot confirm that the data can be described by a logistic regression model with dose as
covariate:

log

(
pi

1 − pi

)
= α + β · dosei.

3. Perform a statistical test of the model indicated under question 2. Explain how to derive the
number of degrees of freedom for the test.

4. Answer questions 1.-3. where you consider log(dose) instead of dose.
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5. Formulate a conclusion of the statistical analysis where you include parameter estimates and con-
fidence intervals for relevant parameters.

6. Give an estimate and a 95 %-confidence interval for the probability that a beetle receiving a dose
of 60 mg/l will die in the experiment.

7. LD50 is the dose that will kill 50% of the beetles. Find an estimate for LD50.

8.18 Effect of insecticides on moths: submodels of the full logsitic

model

Consider the insecticide data of example 7.2. The logistic regression model

log

(
pi

1 − pi

)
= α(sexi) + β(sexi) · log(dosei)

expresses that the log-odds depends linearly on the logarithm of the dose, and that a line is fitted for
each level of sex (both intercept and slope depend on sex).
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Do the following for each of the models 1-5 below: find the plot corresponding to the model, find the
number of (free) parameters and write some R or SAS cose that fits the model.

1.

log

(
pi

1 − pi

)
= α(sexi) + β(sexi) · log(dosei)

2.

log

(
pi

1 − pi

)
= α + β(sexi) · log(dosei)
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3.

log

(
pi

1 − pi

)
= α(sexi) + β · log(dosei)

4.

log

(
pi

1 − pi

)
= α + β · log(dosei)

5.

log

(
pi

1 − pi

)
= α(sexi)

8.19 Different link functions

Both R and SAS allow to fit regression models for binary response data using the link functions (see for
instance the plots in the end of section 7.2.)

logit : p → log

(
p

1 − p

)

probit : p → Ψ−1(p)

cloglog : p → log(− log(1 − p)).

Here the logit-link function corresponds to the the usual logistic regression model. Consider the data
set from exercise 8.17 and denote by p̂i, i = 1, . . . , 8, the fraction of dead beetles for the eight different
doses of CS2. Above answer the following questions for each of the above link functions.

1. Make a plot of f ( p̂i) against log(dosei).

2. Calculate the p-value for the test of the logistic regression model with link function f , where
log(dose) is used as a covariate. Which link function gives the best description of the data?

3. What is the effect of increasing log(dose) by 0.1?

8.20 Experiment with two different diets

20 persons have participated in an experiment where two different diets are to be compared. By ran-
domization 10 persons have been assigned to each diet and every week a weight gain or weight loss
has been observed. The observations are the number of weeks where the diet resulted in a weight loss
for each of the 20 persons in the experiment. The table below displays the results for a period of eight
weeks showing the number of person for each combination of diet and weeks with weight loss.

Weeks with weight loss 0 1 2 3 4 5 6 7 8
diet 1 1 0 2 0 1 1 2 0 3
diet 2 2 1 0 1 2 1 2 1 0

1. Use a logistic regression model to test whether there is a difference between the two diets.

2. Discuss why the assumptions of the logistic regression model might not be satisfied and come up
with an alternative way to analyse the data.
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8.21 Moth experiment with three different response groups

Consider the experiment concerning the effect of insecticide on moths discussed in example 7.2. The
explanatory variables are sex and logdose and we stress that the latter may (and will) play the role as a
factor or as a covariate at different places of the present exercise.

Suppose that the experiment was carried out by classifying each of the moths into one of the three
groups: unaffected by insecticide, collapsed but alive, or dead. Denote by

Yi = (Yi1, Yi2, Yi3), i = 1, . . . , 12,

the responses for each of the 12 combinations of sex and logdose and assume that the Y′
i s are indepen-

dent and multinomially distributed

Yi ∼ m(20, (pi1, pi2, pi3)).

Logistic regression for polytomous response

Consider the log-odds

log

(
pij

pi1

)
= ηij, j = 2, 3, i = 1, . . . , 12,

wrt. response category number 1 and discuss the following two questions for each of the models de-
scribed below.

The questions below must be answered for each of the following models

1.
ηij = α(sexi, logdosei, j)

2.
ηij = α(sexi, j) + β(logdosei, j)

3.
ηij = α(sexi, j)

4.
ηij = β(logdosei, j)

5.
ηij = α(j)

6.
ηij = α(sexi, j) + β(sexi, j) · logdosei

7.
ηij = α(j) + β(sexi, j) · logdosei

8.
ηij = α(sexi, j) + β(j) · logdosei

9.
ηij = α(j) + β(j) · logdosei
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where j = 2, 3 and i = 1, . . . , 12.

Question 1
Make a plot with logdose on the x-axis and each of the 24 log-odds (ηij) on the y-axis that indicates
the restriction put forth by the particular model. Use different plotting symbols for each of the four
combinations of sex and the response group (j = 2, 3). The plot for a completely unrestricted model
(model 1 below) may look like
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Question 2
Discuss how many parameters that may be estimated for each model and give examples of models that
are submodels of each other.

8.22 Effect of different substitutes on the taste of cheese

In order to examine the effect of 4 different substitutes on the taste of cheese 52 referees where asked
to classify the taste into one of 9 response groups. The data is taken from McCullagh and Nelder:
“Generalized Linear Models”.
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Taste category
Cheese 1 2 3 4 5 6 7 8 9 Total

A 0 0 1 7 8 8 19 8 1 52
B 6 9 12 11 7 6 1 0 0 52
C 1 1 6 8 23 7 5 1 0 52
D 0 0 0 1 3 7 14 16 11 52

Total 7 10 19 27 41 28 39 25 12 208

Table 8.13: Number of referees placing the different cheeses in each of the 9 taste categories. Bad taste
corresponds to category 1 whereas good taste corresponds to group 9.

1. Fit a logistic regression model to the data.

2. Show by a test that the data may be described by a proportional odds model.

3. Verify the choice of the proportional odds model by calculating the cumulative odds ratios and
plotting the logarithm of these against estimated thresholds.

4. Is there an effect of the treatment factor?

5. Give the conclusion of the analysis by presenting relevant odds ratios under your final model.
How many parameters does the model contain?

8.23 Difference between fertilizers

In the following exercise we consider a thought field experiment where we wish to compare the effect
of two different fertilizers A and B. The experiment is implemented by using each of the products on 50
plants and after a fixed period of time the condition of each plant is evaluated on a scale ranging from 1
to 5 with 5 being best.

Evaluation 1 2 3 4 5
Fertilizer A 10 4 16 15 5
Fertilizer B 20 15 5 2 8

The table above displays the number of plants receiving each grade at the final evaluation. Use a poly-
nomial distribution

Yi = (Yi1, . . . , Yi5) ∼ m(50, (pi1, . . . , pi5)), i = 1, 2,

to describe the distribution of the evaluation score for the plants corresponding to the two different
fertilizers.

1. How many free parameters does the model contain?

2. Formulate in terms of the parameters the hypothesis that the fertilizer does not affect the evalua-
tion of the plants.

3. Show that the test for no effect of the fertilizer is rejected.

So far we have only concluded that there are differences between the groups of plants receiving fertilizer
A and B. But which fertilizer is the best and how do we quantify a possible difference?

4. By looking at the tabular above, which fertilizer would you prefer?
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Below we try to fit a proportional odds model to the data. Denote by

γij = pi1 + . . . + pij, j = 1, 2, 3, 4, i = 1, 2,

the probability that a plant receiving fertilizer i gets an evaluation score less than or equal to j.

5. Make a table of estimated cumulative probabilities γij based on the data above.

6. Make a table of estimated log-cumulative odds ηij = log(γij/(1 − γij)) based on the data above.

7. The proportional odds model says that the differences

η2j − η1j

between the log-cumulative odds are all equal. Calculate these 4 differences from your table of
log-cumulative odds.

8. Formally the proportional odds model is formulated by

ηij = θj − αi.

Estimate the parameters of the model. How many free parameters can be estimated? Quantify the
difference between the two fertilizers.

9. Show by a test that the data can not be described by a proportional odds model.

As the proportional odds model was rejected we have not yet been able to answer the main question
about which fertilizer is to be preferred. Below we try to transform the data by collapsing some of the
response categories before redoing the analysis above. As the process of collapsing groups throws away
information there is a risk that the transformation will make it impossible to detect differences between
the fertilizers. Further, there is no canonical way to collapse groups and different groupings need not
lead to the same conclusion. However, when the response categories are ordered (as is the case here!)
grouping adjacent groups may be reasonable.

10. Collapse response categories 2 + 3 and 4 + 5 and make a table that summaries the outcome of the
coarser response variable for the two fertilizers.

11. Show that the new data may be described by a proportional odds model.

12. Show that the model may not be reduced any further and conclude that there is a difference be-
tween the two fertilizers.

13. Give an estimate and a 95 %-confidence interval for the parameter that quantifies the difference
between the two fertilizers.

14. By how many times does the odds of receiving grade 3 or lower increase if we switch from fertilizer
A to fertilizer B. Remember to give both an estimate and a corresponding 95 %-confidence interval.

8.24 Pneumoconiosis among coalminers

The following data explores the degree of pneumconiosis in coalface workers as a function of exposure
time. Severity of disease is rated into 3 categories. The data are taken from ***Ashford (1959)***.
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Period (yr) CatI (normal) CatII CatIII (severe)
5.8 98 0 0
15 51 2 1

21.5 34 6 3
27.5 35 5 8
33.5 32 10 9
39.5 23 7 8
46 12 6 10

51.5 4 2 5

Denote by
Yi = (Yi1, Yi2, Yi3), i = 1, . . . , 8,

the number of workers in each response category for the 8 different values of Period. We assume that
the Y′

i s are independent and follow a multinomial distribution

Yi ∼ m(ni, (pi1, pi2, pi3)),

where ni is the number of observations for each value of Period. We want to describe the data by one
of the two proportional odds models given below.

log

(
γij

1 − γij

)
= θj − α · Periodi, j = 1, 2, i = 1, . . . 8, (8.2)

log

(
γij

1 − γij

)
= θj − α · log(Periodi), j = 1, 2, i = 1, . . . 8, (8.3)

The only difference between the models is that for the latter the covariate Period has been transformed
by the logarithm.
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Discuss by considering the figure above

• if Period should be log-transformed

• if you think a proportional odds model would describe the data well
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Analyse the data by answering the questions below.

1. Examine by a test whether the data can be described by the proportional odds model (8.3).

2. Give estimates and 95 %-confidence intervals for the (three) parameters of the model.

3. Does the exposure time (Period) affect the prevalence of pneumoconiosis?

4. Estimate the odds of having severe pneumoconiosis after 20 years of exposure.

5. Estimate the odds of having pneumoconiosis (CatII+CatIII) after 5, 10, and 20 years of exposure.

Note: The model (8.3) expresses that doubling the exposure time has the effect of increasing either of the
odds

γi1

1 − γi1
or

γi2

1 − γi2

by a factor 2−α.
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Month

Treat. Cage 1 2 3 4 5 6 7 8 9 10

1 1 20584 15439 17376 14785 11189 10366 8725 9974 9576 6849

1 3 23265 16956 16200 12934 13763 11893 9949 10490 8674 7153

1 5 17065 12429 14757 10524 11783 8828 9016 9635 8028 8099

1 7 19265 19316 20598 16619 16092 13422 10532 10614 9466 9494

1 9 21062 14095 13267 12543 12734 12268 12219 11791 10379 8463

1 11 23456 10939 13270 14089 12986 13723 11878 13338 12442 10094

1 13 13383 11899 12531 15081 14295 13650 9988 11518 11915 7844

1 15 22717 22434 23151 13163 10029 10408 9119 10188 9549 11153

1 17 17437 13950 15535 14199 11540 9568 8481 9143 8117 5765

1 19 18546 12520 15394 10137 9218 7343 6702 7173 7257 5708

2 37 18536 16827 19185 12445 13227 10412 9855 9169 9639 6853

2 39 18831 14043 16493 12562 10397 8568 8599 8818 6011 5062

2 41 15016 13765 16648 14537 13929 10778 9897 9225 9491 5523

2 43 22276 15497 22024 15616 12440 11454 10290 9456 9567 7003

2 45 18943 14834 18403 16232 13085 12679 10489 9495 10896 8836

2 47 13598 10233 13392 10457 9236 8847 9445 9501 8509 5656

2 49 20498 22136 22094 19825 18157 11452 14809 14564 14503 10643

2 51 19586 12710 12745 7294 15757 15296 14097 14308 13933 10210

2 53 11474 8108 17714 16795 17364 16766 15016 13475 14349 8698

2 55 10284 10760 15628 10692 8420 5842 6138 10271 8435 4486

3 73 18459 15805 19924 18337 24197 18790 19333 22234 18291 11595

3 75 16186 11750 16470 18637 14862 14695 14458 14228 12909 9079

3 77 9614 8319 11375 9446 13157 11153 10540 11476 8976 6123

3 79 15688 15016 20929 12706 17351 15089 14605 15952 14795 10434

3 81 15864 13169 20991 20655 19763 19180 19003 18172 15025 11790

3 83 17721 14489 19085 21333 17011 16148 15280 14762 15745 10477

3 85 17606 7558 15646 15194 13036 10316 8172 8977 8378 3962

3 87 34907 29247 35831 15093 9754 10061 9042 11732 8716 4922

3 89 15189 14046 14909 14713 14999 14201 13184 13073 14639 10330

3 91 16388 14538 17548 19416 22034 17761 14488 16068 14773 10595

Table 8.11: The activity of rats data.
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Day

Lokality Family Treatment 0 1 4 7 15 29

greenhouse 1 1 8.4123 8.8670 7.9576 8.6396 8.1849 7.2755

greenhouse 1 2 10.0257 4.8843 3.4704 3.3419 3.3419 3.4704

greenhouse 2 1 8.4225 9.8930 8.1551 8.4225 7.8877 5.8824

greenhouse 2 2 9.1849 4.7714 2.5050 3.9364 3.8171 3.6978

greenhouse 3 1 7.9542 7.9542 8.7398 7.5614 7.3650 5.7938

greenhouse 3 2 7.1589 4.9977 2.2963 3.2418 1.6209 1.2157

greenhouse 4 2 5.8320 5.1322 4.0824 4.1991 2.7994 2.6827

greenhouse 5 2 5.1792 3.8111 5.2769 3.3225 2.0521 1.7590

greenhouse 6 2 6.7961 6.1783 6.6196 3.5305 4.4131 3.5305

greenhouse 7 2 8.3650 6.7174 7.7313 6.2104 7.3511 6.0837

greenhouse 8 1 10.2015 11.5239 11.3350 10.9572 10.3904 9.4458

greenhouse 8 2 7.4460 6.0048 7.0857 5.8847 6.6053 7.6861

greenhouse 9 1 7.8084 8.1208 8.1208 7.4961 7.4961 7.4961

greenhouse 9 2 7.3911 2.6397 3.5636 4.4875 3.8275 4.3555

greenhouse 10 1 7.9004 9.8485 9.1991 8.2251 7.9004 8.4416

greenhouse 10 2 5.6162 6.0842 2.8081 4.5632 1.5211 2.1061

outside 11 1 10.3995 11.0928 11.0928 10.8947 10.0033 6.9330

outside 11 2 8.1933 8.6660 1.7332 1.0242 1.3393 2.1271

outside 12 1 8.4173 8.7442 8.5808 8.4173 6.7829 5.5571

outside 12 2 11.0723 10.3730 5.1282 3.8462 3.0303 1.9814

outside 13 1 6.2163 5.9677 7.5839 6.3407 2.9838 2.2379

outside 13 2 8.3109 8.5417 5.3097 4.6172 3.6937 1.3851

outside 14 1 10.0572 10.3025 11.5290 9.8119 8.3401 5.8872

outside 14 2 7.7540 7.6203 5.8824 5.2139 4.1444 2.8075

outside 15 1 9.8028 9.4648 9.9718 9.1268 6.7606 4.2254

outside 15 2 9.7605 8.1338 0.4067 0.0000 0.1356 -0.4067

outside 16 1 10.9008 11.8092 11.1279 10.5602 8.8569 7.0401

outside 16 2 8.4703 3.0341 0.5057 0.0000 -0.2528 -0.3793

outside 17 1 10.4496 11.0571 9.7205 8.0194 6.8044 6.4399

outside 17 2 9.6115 8.6504 4.8058 1.9223 0.9612 0.9612

outside 18 1 7.9083 8.3381 7.9943 7.9943 6.7049 4.4699

outside 18 2 10.1396 7.6047 2.3145 1.1021 0.5511 0.1102

outside 19 1 10.1992 11.6415 11.0234 10.8173 8.7569 7.7266

outside 19 2 9.0366 8.8029 5.1415 3.0382 1.8696 0.8569

outside 20 1 9.6980 10.0808 9.8256 9.3152 8.6772 7.0183

outside 20 2 10.2407 10.8972 3.6761 2.1007 0.7877 0.2626

Table 8.12: The photosynthesis data.


